Find the value of
DEC in the given figure.
Answers
Answer:
In ∆ ABC :-
∠ CAB = ∠BAF - ∠CAF ⠀⠀⠀⠀ [straight angle pro. ]
⠀⠀⠀⠀ = 180° - 110°
⠀⠀ ⠀⠀ = 70°
& .. ∠ABC = 50° ⠀⠀⠀⠀ [ given ]
.•. ∠ACB = 180° - ( ∠CAB + ∠ABC ) ⠀⠀⠀⠀ [ angles sum pro. ]
⠀⠀⠀⠀ = 180° - ( 70° - 50° )
⠀⠀⠀⠀ = 180°- 120°
⠀⠀⠀⠀ = 60°
Now, In ∆ CDE :-
∠CDE = 22° ⠀⠀⠀⠀ [ given ]
& .. ∠ECD = 180° - ∠ACB ⠀⠀ ⠀⠀ [straight angle pro. ]
⠀⠀⠀⠀ = 180° - 60°
⠀⠀⠀⠀ = 120°
So, ∠DEC = 180° - ( ∠CDE + ∠ECD ) ⠀⠀⠀⠀ [ angles sum pro. ]
⠀⠀⠀⠀ = 180° - ( 22° + 120° )
⠀⠀⠀⠀ = 180° - 142°
⠀⠀⠀⠀ = 38°
Answer:
ђєгє'ร ץ๏ยг คภรฬєг
∠ CAB = ∠BAF - ∠CAF ⠀⠀⠀⠀ [straight angle pro. ]
⠀⠀⠀⠀ = 180° - 110°
⠀⠀ ⠀⠀ = 70°
& .. ∠ABC = 50° ⠀⠀⠀⠀ [ given ]
.•. ∠ACB = 180° - ( ∠CAB + ∠ABC ) ⠀⠀⠀⠀ [ angles sum pro. ]
⠀⠀⠀⠀ = 180° - ( 70° - 50° )
⠀⠀⠀⠀ = 180°- 120°
⠀⠀⠀⠀ = 60°
Now, In ∆ CDE :-
∠CDE = 22° ⠀⠀⠀⠀ [ given ]
& .. ∠ECD = 180° - ∠ACB ⠀⠀ ⠀⠀ [straight angle pro. ]
⠀⠀⠀⠀ = 180° - 60°
⠀⠀⠀⠀ = 120°
So, ∠DEC = 180° - ( ∠CDE + ∠ECD ) ⠀⠀⠀⠀ [ angles sum pro. ]
⠀⠀⠀⠀ = 180° - ( 22° + 120° )
⠀⠀⠀⠀ = 180° - 142°
⠀⠀⠀⠀ = 38°
ђєภςє, Շђє гєợยเгє๔ คภﻮɭє เร 38° .
ђ๏קє เՇ ђєɭקรץ๏ย
Շђคภкร