Math, asked by riteshsable05, 1 month ago

find the value of discriminat (∆)for the quadratic equation x²-6x-5=0.​

Answers

Answered by Anonymous
67

\large\sf\underline{Given\::}

Quadratic equation :

  • \sf\:x^{2}-6x-5=0

\large\sf\underline{To\:find\::}

  • Discriminant of the given quadratic equation

\large\sf\underline{Formula\:to\:be\:used\::}

  • Discriminant = \small{\mathfrak\purple{b^{2}-4ac}}

\large\sf\underline{Concept\::}

In this question we are asked to find the discriminant for \sf\:x^{2}-6x-5=0. Doing so is simple by using the formula. But to use formula we must know the value of a, b and c. To get the value of a, b and c we would compare the given equation with the general form of the quadratic equation \sf\:ax^{2}+bx+c. This would help us to get the values of a, b and c, after which we can easily find the Discriminant using formula. Let's begin !

\large\sf\underline{Solution\::}

We know quadratic equation is usually in the form \sf\:ax^{2}+bx+c.

So comparing \sf\:x^{2}-6x-5=0 with \sf\:ax^{2}+bx+c we get :

  • a = \tt\pink{1}

  • b = \tt\pink{(-6)}

  • c = \tt\pink{(-5)}

Now as we know the value for a , b and c let's use the formula :

\sf\rightarrow\:Discriminant\:=\:b^{2}-4ac

  • Let's substitute the values of a, b and c

\sf\rightarrow\:Discriminant\:=\:(-6)^{2}-4(1)(-5)

\sf\rightarrow\:Discriminant\:=\:36-4 \times 1 \times (-5)

\sf\rightarrow\:Discriminant\:=\:36-4 \times (-5)

\sf\rightarrow\:Discriminant\:=\:36-(-20)

\sf\rightarrow\:Discriminant\:=\:36+20

\small{\underline{\boxed{\mathrm\red{\rightarrow\:Discriminant\:=\:56}}}}

!! Hope it helps !!

Similar questions