Math, asked by jaya9259, 10 months ago

Find the value of dy/dx , if x= 2 cos square t, y= 2 sin square t

Answers

Answered by BrainlyPopularman
3

ANSWER :

 \\ \longrightarrow \:  \:  \large { \red{ \boxed{ \bold{ \dfrac{dy}{dx} =  - 1  }}}} \\

EXPLANATION :

GIVEN :

  { \bold{   x = 2 \: {cos}^{2}t  }}  and   { \bold{  y = 2 \: {sin}^{2}t  }} \\

TO FIND :

The value of { \bold{ \: \dfrac{dy}{dx} = ? }} \\

SOLUTION :

We know that –

 \\ \implies { \pink{ \boxed{ \bold{ \dfrac{dy}{dx} =  \dfrac{ \dfrac{dy}{dt} }{ \dfrac{dx}{dt} }  }}}} \\

• So , let's find { \bold{ \:  \dfrac{dy}{dt} \:  \:  -  }} \\

 \\ { \bold{ \implies  y = 2 \: {sin}^{2}t  }}

• Now Differentiate with respect to 't'

 \\ { \bold{ \implies   \frac{dy}{dt}  = 2 \times \: 2{sin}t   \times cost  }}

 \\ { \bold{ \implies   \frac{dy}{dx}  = 4 \: {sin}t . cost   \:  \:  \:  \:  -  -  -  -eq.(1) }}

 \\ { \bold{ \implies  x = 2 \: {cos}^{2}t  }}

• Now Differentiate with respect to 't'

 \\ { \bold{ \implies   \frac{dx}{dt}  =2 \times 2 \: {cos}t   \times ( - sint ) }}

 \\ { \bold{ \implies   \frac{dx}{dt}  =4\: {cos}t   \times ( - sint ) \:  \:  \:  -  -  -  - eq.(2) }}

• Now divided eq.(1) and eq.(2) –

 \\ \because \:  \:  \: { \bold{ \dfrac{dy}{dx} =  \dfrac{ \dfrac{dy}{dt} }{ \dfrac{dx}{dt} }  }} \\

• Put the values from eq.(1) and eq.(2) –

 \\ \implies \:  \:  \: { \bold{ \dfrac{dy}{dx} =  \dfrac{ 4 sin(t) cos(t) }{4 cos(t) [ - sin(t) ] }  }} \\

 \\ \implies \:  \:  \large { \red{ \boxed{ \bold{ \dfrac{dy}{dx} =  - 1  }}}} \\

 \\  \:  \:  \large { \bold{  \underline{Used   \:  \: formula}   :  - }} \\

 \\  \:  \:   { \bold{(1)  \:  \: \frac{d( {x}^{n} )}{dx}    = n {x}^{n - 1}  }} \\

 \\  \:  \:   { \bold{(2)  \:  \: \frac{d[sin( \theta)]}{dx}    = cos( \theta)  }} \\

 \\  \:  \:   { \bold{(3)  \:  \: \frac{d[cos( \theta)]}{dx}    = -  \:  sin( \theta)  }} \\

Similar questions