Math, asked by kishormali5274, 9 months ago

Find the value of each of the following: 5 sin square 30°+ cos square 45°-4 tan square 30° / 2 sin square 30° cos square 30°+ tan 45°

Answers

Answered by Rythm14
7

Question :-

 \frac{5 {sin}^{2}30 +  {cos}^{2}45 - 4 {tan}^{2}30  }{2 {sin}^{2}30. {cos}^{2} 30 + tan45 }

Solution :-

we know that,

  • sin30 = 1/2
  • cos45 = 1/√2
  • tan30 = 1/√3
  • tan45 = 1

_______________________

substituting values in the question,

= 5(1/2)^2 + (1/√2)^2 - 4(1/√3)^2/2(1/2)^2 x (√3/2)^2 + 1

= 5(1/4) + (1/2) - 4(1/3) /2(1/4) x (3/4) + 1

= 5/4 + 1/2 - 4/3 / 1/2 x 3/4 + 1

= 7/4 - 4/3 / 3/8 + 1

= 5/12 / 3/8 + 1

= 5/12 / 11/8

= 5/12 x 8/11

= 40/132

= 10/33

Answered by Anonymous
9

{\huge{\boxed{\mathtt{\purple{Question}}}}}

➾ Find the value of :-

 \frac{5 \sin( {30})^{2}  +  { \cos(45) }^{2}  - 4 { \tan(30) }^{2} }{2 { \sin(30) }^{2} . { \cos(30) }^{2} +  \tan(45)  }  \\

{\huge{\boxed{\mathtt{\purple{Solution}}}}}

\mathtt{\: Let's \: write \: the \: value \: of \: these \: trigonometric\: functions}

\:  \sin(30)  =  \frac{1}{2}  \\

 \:  \cos(45)  =  \frac{1}{ \sqrt{2} }  \\

 \tan(45)  = 1 \\

 \: \tan(30)  =  \frac{1}{ \sqrt{3} }  \\

 \:  \cos(30)  =  \frac{ \sqrt{3} }{2}  \\

\mathtt{\:Putting \:these \:values\: in \:the\: given \:Question }

 \:  \frac{5 { (\frac{1}{2}) }^{2}   +  { (\frac{1}{ \sqrt{2} }) }^{2} - 4 ({ \frac{1}{ \sqrt{3} } })^{2}  }{2 { (\frac{1}{2} })^{2} . { \frac{ \sqrt{3} }{2} }^{2}  + 1}  \\

 \:  \frac{5 (\frac{1}{4}) +  \frac{1}{2} - 4 (\frac{1}{3} )  }{2( \frac{1}{4} ).( \frac{3}{4}) + 1 }  \\

 \:  \frac{ \frac{5}{4}  +  \frac{1}{2} -  \frac{4}{3}  }{ \frac{3}{8}  + 1}  \\

\:  \frac{ \frac{ \frac{15 + 6 - 16}{12} }{3 + 8} }{8}  \\

 \:  \frac{ \frac{5}{12} }{ \frac{11}{8} }  \\

 \:  \frac{5}{12}  \times  \frac{8}{11}  \\

 \:  \frac{5 \times 2}{3 \times 11}  \\

{ \boxed {\mathtt{ \red{ \:  \frac{10}{33} }}}} \\

Similar questions