Math, asked by duragpalsingh, 1 year ago

Find the value of expression.
\displaystyle \sf 3 \ tan^2 \ \dfrac{\pi}{ 6} \ + \ \dfrac{4}{3} \ cos^2 \ \dfrac{\pi}{6} \ - \ \dfrac{1}{2} \ cot^3 \ \dfrac{\pi}{4} - \dfrac{2}{3} \ sin^2 \ \dfrac{\pi}{3} \ +\ \dfrac{1}{8} \ sec^4 \ \dfrac{\pi}{3}

Answers

Answered by Anonymous
59

⭐《ANSWER》

\huge\mathfrak\pink {ANSWER}

↪Actually welcome to the concept of the TRIGONOMETRIC EQUATIONS

↪After solving we get Answer as 3

Attachments:

duragpalsingh: Thanks dear!
Anonymous: NP sir !!
Answered by siddhartharao77
61

Step-by-step explanation:

Given: 3 tan^2 \frac{\pi }{6} +\frac{4}{3} cos^2\frac{\pi }{6} - \frac{1}{2} cot^3 \frac{\pi }{4} -\frac{2}{3} sin^2\frac{\pi }{3} +\frac{1}{8} sec^4 \frac{\pi }{3}

\Longrightarrow 3(\frac{1}{\sqrt{3}})^2+\frac{4}{3}(\frac{\sqrt{3}}{2})^2 - \frac{1}{2}(1)^3-\frac{2}{3}(\frac{\sqrt{3}}{2})^2 +\frac{1}{8}(\frac{{1}}{\frac{1}{2}})^4

\Longrightarrow 1 +\frac{4}{3}(\frac{3}{4})-\frac{1}{2}(1)-\frac{2}{3}(\frac{3}{4}) +\frac{1}{8}(16)

\Longrightarrow 1 + 1 - \frac{1}{2} - \frac{1}{2} + 2

\Longrightarrow 1 + 1 - 1 + 2

\Longrightarrow \textbf 3

Hope it helps!


Swetha02: Awesome
duragpalsingh: Thanks! :)
mysticd: remove implies put =
siddhartharao77: Edit option
mysticd: Infront of each line
siddhartharao77: Can u please provide edit option
Similar questions