Math, asked by shiveats1, 8 months ago

Find the value of following

2cos67°/sin23° - tan40°/cot50° - cos0°​

Answers

Answered by pandaXop
13

Value = 0

Step-by-step explanation:

Given:

  • 2cos67°/sin23° – tan40°/cot50° – cos0°

To Find:

  • Value ?

Solution: Identities to be used here

  • cos(90° – θ) = sinθ

  • tan(90° – θ) = cotθ

  • cos0° = 1

\implies \:  \frac{2cos(90 - 23)\degree}{sin23\degree}   \:  -  \frac{tan(90 - 50)\degree}{cot50\degree} \:  - cos0\degree  \\  \\ \implies \:  \frac{2sin23\degree}{sin23\degree}  \:  -  \frac{cot50\degree}{cot50\degree}  \:  - cos0\degree \\  \\ \implies \: 2 - 1 - 1 \\  \\ \implies2 - 2 \\  \\ \implies0

Hence, value of given expression will be 0.

Answered by Anonymous
22

\boxed{\purple{\rm{ \frac{ 2cos67°}{sin23°} -  \frac{tan40°}{cot50°}  - cos0\degree }}}

⇢\rm \frac{2cos(90°-23°)}{sin23°}  -\frac{tan(90° - 40°)}{cot 50°}  - cos 0° \\

⇢\rm \frac{ 2sin23°}{sin23°} -  \frac{cot50°}{cot50°}  -cos0°\\

⇢\rm 2 - 1 - 1

⇢\rm 2 - 2

\therefore~\red{\rm{ 0}}

Similar questions