Math, asked by yashikasahu966984, 2 days ago

find the value of following limits​

Attachments:

Answers

Answered by SugarCrash
6

\sf\red{\underline{\underline{Question}}}:

  • \displaystyle\lim_{ x \to -1} [ 1 + x + x^2 + .... + x^{10} ]

\sf\red{\underline{\underline{Solution}}}:

\displaystyle\lim_{ x \to -1} [ 1 + x + x^2 + ... + x^{10} ]

Here we can see 1 + x + x² + ...+ x¹⁰ is in form of GP. so we can use here Sum of GP formula .

\boxed{\red\bigstar\bf Sum\; of\; GP (S_n) = \dfrac{a(r^n -1)}{r-1}}

where:

  • a = the first term of GP.
  • r = the common ratio of GP.
  • n = nth term of GP.

here we have,

  • a = 1
  • r = 1/x
  • n = 10

putting all values in formula :

\sf\displaystyle \lim_{x \to -1}\left[\dfrac{1\left(\left(\frac{1}{x}\right)^{10}-1\right)}{\frac{1}{x}-1}\right]

\rm\displaystyle \lim_{x \to -1}\left[\dfrac{\dfrac{1}{x^{10}}-1}{\dfrac{1}{x}-1}\right]

Substituting limits :

= \dfrac{\dfrac{1}{(-1)^{10}}-1}{\dfrac{1}{-1}-1}

\rm=\dfrac{\dfrac{1}{1}-1}{\dfrac{1}{-1}-1}

\rm =\dfrac{1-1}{-1-1}

\rm=\dfrac{0}{2}

= 0

\sf\red{\underline{\underline{Therefore}}},

  • \displaystyle\lim_{ x \to -1} [ 1 + x + x^2 + .... + x^{10} ] = 0
Similar questions