find the value of given series
Answers
1/{(ar+b)(ar+a+b)}=1/a{a/(ar+b)(ar+a+b)
={(ar+a+b)-(ar+b)}/{(ar+b)(ar+a+b)×a}
=(1/a){1/(ar+b) -1/(ar+a+b)}
putting r=1 to r=n
we get
=(1/a){1/(a+b) -1/(2a+b) +1/(2a+b)-1/(3a+b)+1/(3a+b)-(1/4a+b)...........+1/(an+b)-1/(an+a+b)}
clearly we can see that, consecutive terms will be cancelled out and finally (1/a)(1/(a+b)-1/(an+a+b) is left
so,the sum=(1/a){(1/(a+b) -1/(an+a+b)}
=(1/a){(an+a+b-a-b)/(an+a+b)(a+b)
=n/{a(n+1)+b}(a+b)
press the like option,,if u understand it
Answer:
n/{a(n+1)+b}(a+b)
Step-by-step explanation:
1/{(ar+b)(ar+a+b)}=1/a{a/(ar+b)(ar+a+b)
={(ar+a+b)-(ar+b)}/{(ar+b)(ar+a+b)×a}
=(1/a){1/(ar+b) -1/(ar+a+b)}
putting r=1 to r=n
we get
=(1/a){1/(a+b) -1/(2a+b) +1/(2a+b)-1/(3a+b)+1/(3a+b)-(1/4a+b)...........+1/(an+b)-1/(an+a+b)}
clearly we can see that, consecutive terms will be cancelled out and finally (1/a)(1/(a+b)-1/(an+a+b) is left
so,the sum=(1/a){(1/(a+b) -1/(an+a+b)}
=(1/a){(an+a+b-a-b)/(an+a+b)(a+b)
=n/{a(n+1)+b}(a+b)