Math, asked by Ashishmishra7847, 9 months ago

Find the value of h, if the distance between (h, 3) and (4, 5) is 5.

Answers

Answered by amitkumar44481
3

Given :

  • AB distance is 5 Units.
  • A( h , 3 )
  • B( 4 , 5 )

Formula :

 \tt \dagger \: \:  \:  \:  \:  D =  \sqrt{ {(x - x)}^{2}  +  {(y - y)}^{2} }

Solution :

Let,

  • A( h , 3 )
  • B( 4 , 5 )

Now,

   \tt\mapsto AB =  \sqrt{ {(4 - h)}^{2}  +  {(5 - 3)}^{2} }

   \tt\mapsto 5 =   \sqrt{16 + h - 8h + 4}

\tt\mapsto 5 =   \sqrt{20  + {h}^{2}  - 8h}

\tt\mapsto 5 =   \sqrt{{h}^{2}  -8h + 20}

\tt\mapsto 5 =    \sqrt{ {h}^{2}  -10h + 2h + 20}

\tt\mapsto 5 =  \sqrt{h(h - 10) + 2(h - 10)}

\tt\mapsto 5 =  \sqrt{(h - 10) (h + 2)}

\tt\mapsto 25 =  (h - 10) (h + 2)

\rule{90}1

Either,

\tt\mapsto 25 = h - 10

\tt\mapsto h = 35.

\rule{90}1

Or,

\tt\mapsto h + 2 =25 .

\tt\mapsto h = 23.

Therefore, the value of h is 23 and 35.

Similar questions