Math, asked by VishwaBrahmane, 1 month ago

Find the value of (i)^(496)^397 . "i" is iota.​

Answers

Answered by MrImpeccable
5

ANSWER:

To find:

  •  \displaystyle (i)^{(496)^{(397)}}

Solution:

We are given that,

\displaystyle\implies (i)^{(496)^{(397)}}

We know that,

 \displaystyle \hookrightarrow a^{x^y}=a^{xy}

So,

 \displaystyle \implies (i)^{(496)\times(397)}

Now, this question may seem difficult but it is not.

We need not multiply the exponents, 496 & 397, to solve it, but make it easy to solve.

So,

We know that, 4 is a factor of 496.

 \displaystyle (\implies 4 \times 124 = 496)

So,

 \displaystyle \implies (i)^{(496\times397)}

 \displaystyle \implies (i)^{(4\times124\times397)}

Now,let us assume that,

 \displaystyle \hookrightarrow 124\times397 = x

So,

 \displaystyle \implies (i)^{4\times x}

 \displaystyle \implies (i)^{4x}

 \displaystyle \implies (i)^{4^x}

We know that,

 \displaystyle \hookrightarrow i^4=1

So,

 \displaystyle \implies (i)^{4^x}

 \displaystyle \implies 1^x

Substituting value of x,

 \displaystyle \implies 1^{( 124\times397 )}

Hence,

 \displaystyle \implies 1

Therefore,

 \displaystyle \implies\bf (i)^{(496)^{(397)}}=1

Similar questions