Find the value of: (i) (-5/6)+(-8/5) (ii) (-2/3) ÷ (3/4) (iii) (5/63)-(-6/21)
Answers
please mark me as brainlist
Step-by-step explanation:
⟶
3
(−5)
+
5
3
Convert them into like fractions by taking the LCM of the denominators i.e, 3 and 5.
LCM of 3 and 5 is 15.
\tt \longrightarrow \dfrac{( - 5) \times 5}{3 \times 5} + \dfrac{3 \times 3}{5 \times 3} ⟶
3×5
(−5)×5
+
5×3
3×3
\tt \longrightarrow \dfrac{( - 25)}{15} + \dfrac{9}{15} = \dfrac{( - 25) + 9}{15} ⟶
15
(−25)
+
15
9
=
15
(−25)+9
\tt \longrightarrow \dfrac{( - 16)}{15} = - 1 \dfrac{1}{15} ⟶
15
(−16)
=−1
15
1
\Huge\therefore∴ The answer is \tt - 1 \dfrac{1}{15} −1
15
1
━━━━━━━━━━━━━━━━━━
\tt \longrightarrow \dfrac{5}{63} - \dfrac{( - 6)}{21} ⟶
63
5
−
21
(−6)
Convert them into like fractions by taking the LCM of the denominators i.e, 63 and 21.
LCM of 63 and 21 is 63.
\tt \longrightarrow \dfrac{5}{63} - \dfrac{( - 6) \times 3}{21 \times 3} ⟶
63
5
−
21×3
(−6)×3
\tt \longrightarrow \dfrac{5}{63} - \dfrac{( - 18)}{63} = \dfrac{5 - ( - 18)}{63} ⟶
63
5
−
63
(−18)
=
63
5−(−18)
\tt \longrightarrow \dfrac{5 + 18}{63} ⟶
63
5+18
\tt \longrightarrow \dfrac{23}{63} ⟶
63
23
\Huge\therefore∴ The answer is \tt\dfrac{23}{63}
63
23
━━━━━━━━━━━━━━━━━━
\tt \longrightarrow \dfrac{( - 1)}{8} = \dfrac{3}{4} ⟶
8
(−1)
=
4
3
The both fractions cannot be equal as one of the fraction is positive and the other fraction is negative.