Math, asked by anannya003911, 3 months ago

Find the value of: (i) (-5/6)+(-8/5) (ii) (-2/3) ÷ (3/4) (iii) (5/63)-(-6/21)

Answers

Answered by harsh466123
0

please mark me as brainlist

Step-by-step explanation:

3

(−5)

+

5

3

Convert them into like fractions by taking the LCM of the denominators i.e, 3 and 5.

LCM of 3 and 5 is 15.

\tt \longrightarrow \dfrac{( - 5) \times 5}{3 \times 5} + \dfrac{3 \times 3}{5 \times 3} ⟶

3×5

(−5)×5

+

5×3

3×3

\tt \longrightarrow \dfrac{( - 25)}{15} + \dfrac{9}{15} = \dfrac{( - 25) + 9}{15} ⟶

15

(−25)

+

15

9

=

15

(−25)+9

\tt \longrightarrow \dfrac{( - 16)}{15} = - 1 \dfrac{1}{15} ⟶

15

(−16)

=−1

15

1

\Huge\therefore∴ The answer is \tt - 1 \dfrac{1}{15} −1

15

1

━━━━━━━━━━━━━━━━━━

\tt \longrightarrow \dfrac{5}{63} - \dfrac{( - 6)}{21} ⟶

63

5

21

(−6)

Convert them into like fractions by taking the LCM of the denominators i.e, 63 and 21.

LCM of 63 and 21 is 63.

\tt \longrightarrow \dfrac{5}{63} - \dfrac{( - 6) \times 3}{21 \times 3} ⟶

63

5

21×3

(−6)×3

\tt \longrightarrow \dfrac{5}{63} - \dfrac{( - 18)}{63} = \dfrac{5 - ( - 18)}{63} ⟶

63

5

63

(−18)

=

63

5−(−18)

\tt \longrightarrow \dfrac{5 + 18}{63} ⟶

63

5+18

\tt \longrightarrow \dfrac{23}{63} ⟶

63

23

\Huge\therefore∴ The answer is \tt\dfrac{23}{63}

63

23

━━━━━━━━━━━━━━━━━━

\tt \longrightarrow \dfrac{( - 1)}{8} = \dfrac{3}{4} ⟶

8

(−1)

=

4

3

The both fractions cannot be equal as one of the fraction is positive and the other fraction is negative.

Similar questions