Find the value of
I)a^2 + b^2 when a + b = 7 and ab = 12
ii) x^2 + 1/x^2 and x^4 + 1/x^4 if x + 1/x = 4
Answers
Answered by
5
If a + b = 7
ab = 12
I) a^2+b^2
ii) x + 1/x = 4
Now. x^4 +1/x^4
Answered by
1
Hey !!
(1) a + b = 7 and Ab = 12.
To find :- a² + b²
=> a² + b² = ( a + b )² - 2ab
=> ( 7 )² - 2 × 12
=> 49 - 24
=> 25
(2) X + 1/X = 4
Squaring both sides , we get
( X + 1/X )² = 4²
X² + 1/X² + 2 × X × 1/X = 16
X² + 1/X² + 2 = 16
X² + 1/X² = 14.
Squaring both sides , we get
( X² + 1/X²)² = 14²
X⁴ + 1/X⁴ + 2 × X² × 1/X² = 196
X⁴ + 1/X⁴ + 2 = 196
X⁴ + 1/X⁴ = 194.
(1) a + b = 7 and Ab = 12.
To find :- a² + b²
=> a² + b² = ( a + b )² - 2ab
=> ( 7 )² - 2 × 12
=> 49 - 24
=> 25
(2) X + 1/X = 4
Squaring both sides , we get
( X + 1/X )² = 4²
X² + 1/X² + 2 × X × 1/X = 16
X² + 1/X² + 2 = 16
X² + 1/X² = 14.
Squaring both sides , we get
( X² + 1/X²)² = 14²
X⁴ + 1/X⁴ + 2 × X² × 1/X² = 196
X⁴ + 1/X⁴ + 2 = 196
X⁴ + 1/X⁴ = 194.
Similar questions