Math, asked by jjofihb, 1 year ago

Find the value of

I)a^2 + b^2 when a + b = 7 and ab = 12

ii) x^2 + 1/x^2 and x^4 + 1/x^4 if x + 1/x = 4

Answers

Answered by MonarkSingh
5
\huge{\texttt{\fcolorbox{Red}{aqua}{Hey Mate!!!}}}

If a + b = 7
ab = 12

I) a^2+b^2
(a + b) {}^{2}  = a {}^{2}  + b {}^{2} + 2ab \\ a {}^{2}   + b {}^{2}  = (a + b) {}^{2}  - 2ab \\ a {}^{2}  + b {}^{2}  = 7 {}^{2}  - 2 \times 12 \\ a {}^{2}  + b {}^{2}  = 49 - 24 \\ a {}^{2}  + b {}^{2}  = 25
ii) x + 1/x = 4
(x +  \frac{1}{x} ) {}^{2}  = x {}^{2}  +  \frac{1}{x {}^{2} }  + 2 \times x \times  \frac{1}{x}  \\ x {}^{2}  +   \frac{1}{x {}^{2} }  = (x +  \frac{1}{x} ) {}^{2}  - 2 \\ x {}^{2}  +  \frac{1}{x {}^{2} }  = 4 {}^{2}  - 2 \\ x {}^{2}  +  \frac{1}{x {}^{2} }  = 16 - 2 \\ x {}^{2}  +  \frac{1}{x {}^{2} }  = 14
Now. x^4 +1/x^4
(x {}^{2}  +  \frac{1}{x} ) {}^{2}  = x {}^{4}  +  \frac{1}{x {}^{4} }  + 2 \times x {}^{2}  \times  \frac{1}{x {}^{2} }  \\ x {}^{4}  +  \frac{1}{x {}^{4} }  = (x {}^{2}  +  \frac{1}{x {}^{2} } ) {}^{2}  - 2 \\ x {}^{4}  +  \frac{1}{x {}^{4} }  = (14) {}^{2}  - 2 \\ x {}^{4}  +  \frac{1}{x {}^{4} }  = 196 - 2 \\ x {}^{4}  +  \frac{1}{x {}^{4} }  = 194
\huge{\red{\boxed{\boxed{\boxed{\boxed{\boxed{\underline{\underline{Hope\:it\: helps \: you}}}}}}}}}
Answered by Panzer786
1
Hey !!

(1) a + b = 7 and Ab = 12.

To find :- a² + b²

=> a² + b² = ( a + b )² - 2ab

=> ( 7 )² - 2 × 12

=> 49 - 24

=> 25

(2) X + 1/X = 4

Squaring both sides , we get

( X + 1/X )² = 4²

X² + 1/X² + 2 × X × 1/X = 16

X² + 1/X² + 2 = 16

X² + 1/X² = 14.

Squaring both sides , we get

( X² + 1/X²)² = 14²

X⁴ + 1/X⁴ + 2 × X² × 1/X² = 196

X⁴ + 1/X⁴ + 2 = 196

X⁴ + 1/X⁴ = 194.
Similar questions