Find the value of
(i) cos 15 (ii) sin 105 (iii) tan 105
Answers
Answered by
1
Answer:
cos 15 = √3 + 1 ÷ 2√2
sin 105 = √3 + 1 ÷ 2√2
tan 105 = - (√3 + 1 )÷ (√3 - 1 )
Step-by-step explanation:
cos 15 = cos( 45 - 30 )
cos( 45 - 30 ) = cos(45) cos(30) + sin(45) sin(30)
cos( 45 - 30 ) = ( 1/√2 ) (√3/2) + ( 1/√2 ) ( 1/2)
cos( 45 - 30 ) = √3 + 1 ÷ 2√2
cos 15 = √3 + 1 ÷ 2√2
sin 105 = sin ( 90 + 15 )
sin 105 = cos 15
sin 105 = √3 + 1 ÷ 2√2
tan 105 = tan ( 90 + 15 )
tan 105 = - cot 15
now cot 15 = cos 15 / sin 15
sin 15 = sin( 45 - 30 )
sin( 45 - 30 ) = sin(45) cos(30) - cos(45) sin(30)
sin( 45 - 30 ) = ( 1/√2 ) (√3/2) - ( 1/√2 ) ( 1/2)
sin( 45 - 30 ) = √3 - 1 ÷ 2√2
sin(15) = √3 - 1 ÷ 2√2
cot 15 = cos 15 / sin 15
cot 15 = ( √3 + 1 ÷ 2√2 ) ÷ ( √3 - 1 ÷ 2√2 )
cot 15 = (√3 + 1 )÷ (√3 - 1 )
tan 105 = - cot 15
tan 105 = - (√3 + 1 )÷ (√3 - 1 )
Similar questions