Math, asked by singhkeshav386, 8 months ago

find the value of:
i^n+100+i^n+50+in+48+i^n+46​

Answers

Answered by saraswatikar446
0

............................

Answered by kuldeeprathod97
0

Answer:

Solution:

i) 1 + 4 + 7 + 10 +...... to n terms = 590

Here given series is AP,

first term a= 1

common difference d = 3

Sum of n terms is given by

\begin{gathered}S_{n} = \frac{n}{2} \Big[2a + (n - 1)d\Big] \\ \\ 590 = \frac{n}{2} (2 + (n - 1)3) \\ \\ 1180 = n(2 + 3n - 3) \\ \\ 1180 = n(3n - 1) \\ \\ 3 {n}^{2} - n - 1180 = 0 \\ \\ now \: solve \: this \: quadratic \: eq \\ \\ n_{1,2} = \frac{1 ±\sqrt{1 + 14160} }{6} \\ \\ n_{1,2} = \frac{1 ± 119}{6} \\ \\ n_{1} = \frac{1 + 119}{6} \\ \\ n_{1}= \frac{120}{6} = 20 \\ \\ n_{2} = \frac{1 - 119}{6} \\ \\ n_{2} = \frac{ - 118}{6} = \frac{ - 59}{3} \\ \\\end{gathered}

S

n

=

2

n

[2a+(n−1)d]

590=

2

n

(2+(n−1)3)

1180=n(2+3n−3)

1180=n(3n−1)

3n

2

−n−1180=0

nowsolvethisquadraticeq

n

1,2

=

6

1+14160

n

1,2

=

6

1±119

n

1

=

6

1+119

n

1

=

6

120

=20

n

2

=

6

1−119

n

2

=

6

−118

=

3

−59

n can't be negative and fractional,so discard second value.

Thus n = 20

2) 50 + 46 + 42 + 38 + ...to n terms = 336

here,a= 50

d = -4

\begin{gathered}S_{n} = \frac{n}{2} \bigg[2a + (n - 1)d\bigg] \\ \\ 336 = \frac{n}{2} (100 - (n - 1)4) \\ \\ 672 = n(100 - 4n + 4) \\ \\ 672 = n( - 4n + 104) \\ \\ - 4{n}^{2} + 104n - 672= 0 \\ \\ 2 {n}^{2} - 52n + 336 = 0 \\ \\ now \: solve \: this \: quadratic \: eq \\ \\ n_{1,2} = \frac{52 ±\sqrt{2704 - 2688} }{4} \\ \\ n_{1,2} = \frac{52 ±4}{4} \\ \\ n_{1} = \frac{52 + 4}{4} \\ \\ n_{1}= \frac{56}{4} = 14 \\ \\ n_{2} = \frac{52- 4}{4} \\ \\ n_{2} = \frac{ 48}{4} = 12 \\ \\\end{gathered}

S

n

=

2

n

[2a+(n−1)d]

336=

2

n

(100−(n−1)4)

672=n(100−4n+4)

672=n(−4n+104)

−4n

2

+104n−672=0

2n

2

−52n+336=0

nowsolvethisquadraticeq

n

1,2

=

4

52±

2704−2688

n

1,2

=

4

52±4

n

1

=

4

52+4

n

1

=

4

56

=14

n

2

=

4

52−4

n

2

=

4

48

=12

Hope it helps you.

i hope thish answer is your right answer

Similar questions