find the value of i power i
Attachments:
Answers
Answered by
3
u need to give the integral value of i.
then only it'll be possible to find the value of i^i
then only it'll be possible to find the value of i^i
sagar17164:
what was the answer
Answered by
5
Best Answer
one of the most famous relations in math is e^(pi*i)=-1
i=sqrt(-1)
i=e^(pi*i/2) (divide exponent by 2 gives the square root).
i^i=e^(-pi/2) (multipling the exponent by i raises to the power of i .and i*i=-1. So this exponent is pi*(-1)/2 )
e^(-pi/2)=0.2079
There are actually an infinitude of values. This would be the principal one, and if the problem asks for one, this is it.
Hope it helps .....!!
one of the most famous relations in math is e^(pi*i)=-1
i=sqrt(-1)
i=e^(pi*i/2) (divide exponent by 2 gives the square root).
i^i=e^(-pi/2) (multipling the exponent by i raises to the power of i .and i*i=-1. So this exponent is pi*(-1)/2 )
e^(-pi/2)=0.2079
There are actually an infinitude of values. This would be the principal one, and if the problem asks for one, this is it.
Hope it helps .....!!
Similar questions