Find the value of
i)
ii)
Answers
Answer:
i) 20349
ii) 142506
Step-by-step explanation:
We know the formula of combination as shown below
nCr = n! / r! (n - r)!
Therefore,
i) 20C4 + 20C5.
so, 20!/(4! * 16!) + 20!/(5! * 15!)
or, (20*19*18*17)/4! + (20*19*18*17*16)/5!
or, 4845 + 15504
or, 20349 [Ans]
ii)31C26 - 30C26
or, 31!/(26! * 5!) - 30!/(26! * 4!)
or, (31*30*29*28*27)/5! - (30*29*28*27)/4!
or, 169911 - 27405
or, 142506. [Ans]
Thus by applying a small formula you can easily solve such sums of permutation and combination.
Answer:
i) ²¹C₅
ii) ²⁰C₂₅
Step-by-step explanation:
Hi,
Consider ⁿCₓ₋₁ + ⁿCx
= n!/(x - 1)!(n-x+1)! + n!/(x)!(n-x)!
= n!/(x)!(n-x+1)![x + n - x + 1]
= n!/(x)!(n-x+1)![n + 1]
= (n + 1)!/x!(n+1-x)!
= ⁿ⁺¹Cₓ
Thus, ⁿCₓ₋₁ + ⁿCx = ⁿ⁺¹Cₓ
i) ²⁰C₄ + ²⁰C₅
Put n = 20 and x = 5 in ⁿCₓ₋₁ + ⁿCx = ⁿ⁺¹Cₓ , we get
= ²¹C₅
ii) ³¹C₂₆ - ³⁰C₂₆
Using ⁿCₓ₋₁ + ⁿCx = ⁿ⁺¹Cₓ
ⁿ⁺¹Cₓ - ⁿCx = ⁿCₓ₋₁ ,
Put n = 31, x = 26 we get
³⁰C₂₅
Hope, it helps !