Find the value of (I²+1) (i²+2) (i²+3) ... (i²+n)
Answers
Answered by
3
Answer:
1+i
2
+i
4
+i
6
+i
8
+i
10
+i
12
+i
14
+i
16
+i
18
+i
20
=1+(−1)+1+(−1)+1+(−1)+1+(−1)+1+(−1)+1
=1 (Ans)
Formula:
i
2
=−1 and i
4
=1
Answered by
1
The value of (i²+1) (i²+2) (i²+3) ... (i²+n) is zero (0).
Step-by-step explanation:
Given: (i²+1) (i²+2) (i²+3) ... (i²+n)
To Find: Value of the given expression
Solution:
- Finding the value of (i²+1) (i²+2) (i²+3) ... (i²+n)
We have, ⇒ (i²+1) (i²+2) (i²+3) ... (i²+n)
Since i² = -1, therefore,
⇒ ((-1)+1) ((-1)+2) ((-1)+3) ... ((-1)+n)
⇒ (1-1) (2-1) (3-1) ... (n-1)
⇒ (0) (2-1) (3-1) ... (n-1)
⇒ 0
Hence, the value of (i²+1) (i²+2) (i²+3) ... (i²+n) is zero (0).
Similar questions