Find the value of , if (2 − 1) is a factor of the polynomial 62 + − 2.
Answers
Answered by
2
Answer:
Here is your answer :
P(x) = 6x² + kx - 2
g(x) = 2x - 1
Put g(x) = 0
2x - 1 = 0
x = 1/2
Therefore, g(x) is a factor of p(x).
Then, p( 1/2) = 0
6 {( \frac{1}{2} )}^{2} + k( \frac{1}{2} ) - 2 = 06(21)2+k(21)−2=0
6 \times \frac{1}{4} - 2+ \frac{1}{2} k = 06×41−2+21k=0
\frac{3}{2} - 2 + \frac{1}{2} k = 023−2+21k=0
\frac{3 - 4}{2} + \frac{1}{2} k = 023−4+21k=0
\frac{ - 1}{2} + \frac{1}{2} k = 02−1+21k=0
\frac{1}{2} k = \frac{1}{2}21k=21
k = \frac{1}{2} \times 2k=21×2
k = 1k=1
here is your answer
Similar questions