English, asked by aryanpratapsingh798, 10 hours ago

find the value of integral of sec^2 2x/(cotx-tanx)^2 dx​

Answers

Answered by mathdude500
40

\large\underline{\sf{Solution-}}

➢ Given integral is

 \red{\rm :\longmapsto\:\displaystyle\int\sf \dfrac{ {sec}^{2}2x}{ {(cotx - tanx)}^{2} } \: dx}

can be further rewritten as

\rm \:  =  \:  \: \displaystyle\int\sf \dfrac{1}{ {cos}^{2}2x \:  {(cotx - tanx)}^{2}  }  \: dx

Now, Consider,

\rm :\longmapsto\:cotx - tanx

\rm \:  =  \:  \: \dfrac{cosx}{sinx}  - \dfrac{sinx}{cosx}

\rm \:  =  \:  \: \dfrac{ {cos}^{2} x -  {sin}^{2}x}{sinxcosx}

\rm \:  =  \:  \: 2 \times \dfrac{cos2x}{2sinxcosx}

\rm \:  =  \:  \: \dfrac{2cos2x}{sin2x}

\bf\implies \:cotx - tanx=  \:  \: \dfrac{2cos2x}{sin2x}

So, given integral reduced to

\rm \:  =  \:  \: \displaystyle\int\sf \dfrac{1}{ {cos}^{2}2x \:  {(cotx - tanx)}^{2}  }  \: dx

\rm \:  =  \:  \: \displaystyle\int\sf \dfrac{ {sin}^{2} 2x}{ {cos}^{2}2x \:  \times 4 {cos}^{2} 2x}  \: dx

\rm \:  =  \:  \: \dfrac{1}{4}\displaystyle\int\sf   {tan}^{2}2x \:  {sec}^{2}2x  \: dx

Now, we use method of Substitution to evaluate such integral,

Substitute,

 \red{\rm :\longmapsto\:tan2x = y}

On differentiating both sides w. r. t. x, we get

 \red{\rm :\longmapsto\: {sec}^{2} 2x \times 2 \: dx = dy}

 \red{\rm :\longmapsto\: {sec}^{2} 2x \:  dx =  \dfrac{1}{2}  \: dy}

On substituting these values, we get

\rm \:  =  \:  \: \dfrac{1}{8}\displaystyle\int\sf  {y}^{2}  \: dy

\rm \:  =  \:  \: \dfrac{1}{8} \:  \times \dfrac{ {y}^{2 + 1} }{2 + 1}  + c

\rm \:  =  \:  \: \dfrac{1}{8} \:  \times \dfrac{ {y}^{3} }{3}  + c

\rm \:  =  \:  \:  \dfrac{ {y}^{3} }{24}  + c

\rm \:  =  \:  \:  \dfrac{ {tan}^{3}2x }{24}  + c

Hence,

 \red{\rm :\longmapsto\:\displaystyle\int\bf \dfrac{ {sec}^{2}2x}{ {(cotx - tanx)}^{2} } \: dx = \dfrac{ {tan}^{3}2x}{24}}

Formula Used :-

 \blue{ \boxed{\bf  \:cos2x =  {cos}^{2}x -  {sin}^{2}x}}

 \blue{ \boxed{\bf  \:sin2x = 2sinx \: cosx}}

 \blue{ \boxed{\bf  \:\dfrac{d}{dx}tanx =  {sec}^{2}x}}

 \blue{ \boxed{\bf  \:\dfrac{d}{dx}x =1}}

 \blue{ \boxed{\bf  \:\displaystyle\int\bf  \:  {x}^{n}dx =  \frac{ {x}^{n + 1} }{n + 1} + c}}

Additional Information :-

 \blue{ \boxed{\bf  \:\displaystyle\int\sf  \: cosxdx =  sinx + c}}

 \blue{ \boxed{\bf  \:\displaystyle\int\sf  \: sinxdx =  -  \:  cosx + c}}

 \blue{ \boxed{\bf  \:\displaystyle\int\sf  \: cosecx \: cotx \: dx =  -  \:  cosecx + c}}

 \blue{ \boxed{\bf  \:\displaystyle\int\sf  \: secx \: tanx \: dx = \:  secx + c}}

 \blue{ \boxed{\bf  \:\displaystyle\int\sf  \:  {sec}^{2} xdx =  \:  tanx + c}}

 \blue{ \boxed{\bf  \:\displaystyle\int\sf  \:  {cosec}^{2} xdx =  -  \:  cotx + c}}

Similar questions