Math, asked by tanishkajadhav982, 2 months ago

find the value of integration 0_^π/3 √1-cos2x/2 dx​

Attachments:

Answers

Answered by kshreyank37
1

Step-by-step explanation:

here is your answer!! hope it will help you!!

Attachments:
Answered by mathdude500
3

Given :-

\rm :\longmapsto\:\displaystyle\int^{\dfrac{\pi}{3} } _{0}   \sqrt{\dfrac{1 - cos2x}{2} } dx

Identities Used :-

\boxed{ \bf \: 1 - cos2x = 2 {sin}^{2}x}

\boxed{ \bf \:\:\displaystyle\int \:  \bf \: sinx  dx =  - cosx + c}

Solution :-

\rm :\longmapsto\:\displaystyle\int^{\dfrac{\pi}{3} } _{0}   \sqrt{\dfrac{1 - cos2x}{2} } dx

\rm \:  \:  =  \:  \: \:\displaystyle\int^{\dfrac{\pi}{3} } _{0}   \sqrt{\dfrac{2 {sin}^{2}x }{2} } dx

\rm \:  \:  =  \:  \: \:\displaystyle\int^{\dfrac{\pi}{3} } _{0}   \sqrt{ {sin}^{2}x} dx

\rm \:  \:  =  \:  \: \:\displaystyle\int^{\dfrac{\pi}{3} } _{0}  |sinx|  dx

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \because \: \boxed{ \bf \:  {( \sqrt{x}) }^{2}  =  |x| }

\rm \:  \:  =  \:  \: \:\displaystyle\int^{\dfrac{\pi}{3} } _{0}sinx  dx

\red{ \because\boxed{ \bf \: As \: x \in \:  {1}^{st} \: quadrant \:  \implies \: sinx > 0}}

\rm \:  \:  =  \:   - \: \bigg(cosx\bigg) ^{\dfrac{\pi}{3} } _{0}

\rm \:  \:  =  \:  \:  -  \: \bigg(cos\dfrac{\pi}{3}  - cos0\bigg)

\rm \:  \:  =  \:  \:   -   \: ( \dfrac{1}{2}  - 1)

\rm \:  \:=\:  \: \dfrac{1}{2}

\rm :\implies\:\displaystyle\int^{\dfrac{\pi}{3} } _{0}    \bf \: \sqrt{\dfrac{1 - cos2x}{2} } dx =  \dfrac{1}{2}

Additional Information

\sf (1). \: \int\limits^b_a {f(x)} \, dx = \int\limits^b_a {f(t)}

\sf (2). \: \int\limits^b_a {f(x)} \, dx = -\int\limits^a_b {f(x)}

\sf (3). \: \int\limits^b_a {f(x)} \, dx = \int\limits^c_a {f(x)} \, dx + \int\limits^b_c {f(x)} \, dx \ where\ \ a < c < b

\sf (4). \: \int\limits^a_0 {f(x)} \, dx =\int\limits^a_0 {f(a - x)}

\sf (5). \: \int\limits^b_a {f(x)} \, dx = \int\limits^b_a{f(a + b - x)}

Similar questions