Math, asked by Rashika478, 2 months ago

Find the value of integration|(1 - x)|.dx limit 0,4​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int_{0}^4 \rm  |1 - x|  \: dx

can be rewritten as

\rm \:  =  \:\:\displaystyle\int_{0}^1 \rm  |1 - x|  \: dx + \displaystyle\int_{1}^4 \rm  |1 - x|  \: dx

We know,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x|  = \begin{cases} &\sf{ - x \:  \: if \: x < 0} \\ &\sf{x \:  \: if \: x \geqslant 0 \:  \:  \:  \:  \:  \:  \:  \: } \end{cases}\end{gathered}\end{gathered}

So,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |1 - x|  = \begin{cases} &\sf{ 1- x \:  \: if \: x < 1} \\ &\sf{x - 1 \:  \: if \: x \geqslant 1 \:  \:  \:  \:  \:  \:  \:  \: } \end{cases}\end{gathered}\end{gathered}

So, above integral can be rewritten as

\rm \:  =  \:\:\displaystyle\int_{0}^1 \rm  (1 - x) \: dx + \displaystyle\int_{1}^4 \rm  (x - 1)  \: dx

\rm \:  =  \:  \: \bigg(x - \dfrac{ {x}^{2} }{2} \bigg)_{0}^1 + \bigg(\dfrac{ {x}^{2} }{2}  - x\bigg)_{1}^4

\rm \:  =  \:  \: \bigg(1 - \dfrac{1}{2} \bigg) + \bigg(\dfrac{16}{2} - 4 \bigg) - \bigg(\dfrac{1}{2} - 1 \bigg)

\rm \:  =  \:  \: \bigg(\dfrac{1}{2} \bigg) + \bigg(8- 4 \bigg) - \bigg( - \dfrac{1}{2} \bigg)

\rm \:  =  \:  \: \bigg(\dfrac{1}{2} \bigg) + \bigg(4\bigg)  + \bigg( \dfrac{1}{2} \bigg)

\rm \:  =  \:  \: 5

Additional Information :-

\underbrace{\boxed{ \tt{\displaystyle\int_{a}^b \rm f(x)dx \:  =  \: \displaystyle\int_{a}^b \rm f(y)dy }}}

\underbrace{\boxed{ \tt{\displaystyle\int_{a}^b \rm f(x)dx \:  = -   \: \displaystyle\int_{b}^a \rm f(x)dx }}}

\underbrace{\boxed{ \tt{\displaystyle\int_{a}^b \rm f(x)dx \:  =  \: \displaystyle\int_{a}^b \rm f(a + b - x)dx}}}

\underbrace{\boxed{ \tt{\displaystyle\int_{0}^a \rm f(x)dx \:  =  \: \displaystyle\int_{0}^a \rm f(a - x)dx}}}

\underbrace{\boxed{ \tt{\displaystyle\int_{ - b}^b \rm f(x)dx = 2\displaystyle\int_{0}^b \rm f(x)dx \: if \: f( - x) = f(x) }}}

\underbrace{\boxed{ \tt{\displaystyle\int_{ - b}^b \rm f(x) dx \: = 0 \: if \: f( - x) = f(x) }}}

\underbrace{\boxed{ \tt{\displaystyle\int_{0}^{2a} \rm f(x)dx = 2\displaystyle\int_{0}^a \rm f(x)dx  \: \: if \: f(2a - x) = f(x) }}}

\underbrace{\boxed{ \tt{\displaystyle\int_{0}^{2a} \rm f(x)dx = 0  \: \: if \: f(2a - x) = -  \:  f(x) }}}

Similar questions