Math, asked by Amritagc730, 8 months ago

Find the value of K : (⅘)² × (⅘)⁵ = (⅘)²k+1​

Answers

Answered by ashauthiras
4

Answer:

values 3 and -1 .

Step-by-step explanation:

For the given quadratic equation to have equal roots the value of the determinant of the equation

should be equal to zero.

Given equation - 4x²-2(k+1) x+(k+1)

a = 4 , b = -2(k+1) , c = (k+1)

Determinant = b² - 4ac =0

Solving the equation to find the values of k

=> 4(k+1)² - 4 × 4 × (k+1) = 0

=> 4k² + 4 + 8k - 16k -16 = 0

=> 4k² - 8k - 12 = 0

=> k² - 2k -3 = 0

=> k² - 3k + k - 3 = 0

=> k (k-3) +1 (k-3) = 0

=> (k-3) (k+1) = 0

=> k = 3,-1

values 3 and -1 .

Answered by nilesh102
8

{ \underline{ \huge{ \bf{ \red{ \underline{Solution:- }}}}}}

To find value of K

{ \bf{ \green{ \dashrightarrow{ \purple{  { (\frac{4}{5}) }^{2 } \times   {( \frac{4}{5} )}^{5}  =   {( \frac{4}{5} )}^{2}  \times K + 1 }}}}}

{ \bf{ \green{ \dashrightarrow{ \purple{   \frac{ {4}^{2} }{ {5}^{2} } \times    \frac{ {4}^{5} }{ {5}^{5} }  =   \frac{ {4}^{2} }{ {5}^{2} }\times K + 1 }}}}}

{ \bf{ \green{ \dashrightarrow{ \purple{  \frac{16}{25} \times   \frac{1024}{3125} =    \frac{16}{25}\times K + 1 }}}}}

{ equal term on both side }

{ \bf{ \green{ \dashrightarrow{ \purple{   \cancel{\frac{16}{25} }\times   \frac{1024}{3125} =   { \cancel{ \frac{16}{25}}}\times K + 1 }}}}}

{ \bf{ \green{ \dashrightarrow{ \purple{     \frac{1024}{3125} =   K + 1 }}}}}

{ \bf{ \green{ \dashrightarrow{ \purple{     \frac{1024}{3125} - 1 =   K }}}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \: i.e.}

{ \bf{ \green{ \dashrightarrow{ \purple{  K =    \frac{1024}{3125} - 1  }}}} }

{ \bf{ \green{ \dashrightarrow{ \purple{  K =    \frac{1024}{3125} -  \frac{3125}{3125}   }}}} }

{ \bf{ \green{ \dashrightarrow{ \purple{  K =    \frac{1024  \: -  \: 3125}{3125}  }}}} }

{ \bf{ \green{ \dashrightarrow{ \purple{  K =     - \frac{2101}{3125}  }}}} }

—› OR ‹—

{ \bf{ \green{ \dashrightarrow{ \purple{  K =     -   \: 0.67232}}}} }

i hope it helps you.

Similar questions