Math, asked by jsrppoonamgemini, 9 months ago

Find the value of K (2x-3) is a factor of x cube +2xsquare -10x+K

Answers

Answered by prernaranjan1
1

Answer:

Step-by-step explanation:

g(x): x2 + 2x + k = 0

Given polynomial: 2x4 + x3 -14x2 + 5x + 6

Divide the polynomial by the factor

remainder is: ( 21 + 7k)x + (6 + 8k + 2k2) = 0

21 + 7k = 0 ⇒ k = -3.

Answered by Anonymous
1

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ value \ of \ k \ is \ -\frac{57}{8}}

\sf\orange{Given:}

\sf{The \ given \ polynomial \ is}

\sf{\implies{p(x)=x^{3}+2x^{2}-10x+k}}

\sf{\implies{The \ factor \ of \ polynomial \ is \ (2x-3)}}

\sf\pink{To \ find:}

\sf{The \ value \ of \ k.}

\sf\green{\underline{\underline{Solution:}}}

\sf{The \ given \ polynomial \ is}

\sf{\implies{p(x)=x^{3}+2x^{2}-10x+k}}

\sf{p(x)=0}

\sf{The \ factor \ of \ polynomial \ is \ (2x-3)}

\sf{\therefore{2x-3=0}}

\sf{\therefore{x=\frac{3}{2}}}

\sf{Substitute \ x=\frac{3}{2} \ in \ the \ given \ polynomial.}

\sf{\implies{(\frac{3}{2})^{3}+2\times(\frac{3}{2})^{2}-10\times\frac{3}{2}+k=0}}

\sf{\therefore{\frac{27}{8}+\frac{9}{2}-15+k=0}}

\sf{\therefore{\frac{27+36-120}{8}+k=0}}

\sf{\therefore{\frac{57}{8}+k=0}}

\sf{\therefore{k=-\frac{57}{8}}}

\sf\purple{\tt{\therefore{The \ value \ of \ k \ is \ -\frac{57}{8}}}}

Similar questions