Math, asked by jjass39, 4 months ago

find the value of 'k'
3x+ y =7
4x+ky =9 has a unique solution​

Answers

Answered by DILhunterBOYayus
15

\sf{\bold{\blue{\underline{\underline{Given}}}}}

● pair of equation

• 3x+y=7

• 4x+ky=9

⠀⠀⠀⠀

\sf{\bold{\red{\underline{\underline{To\:Find}}}}}

■ Value of "k".??■⠀⠀⠀⠀

\sf{\bold{\purple{\underline{\underline{Solution}}}}}

➔ Here it is given that the pair of equations have a unique solution

➔ If a pair of equations have a unique solution we know that,

    \tt{\dfrac{a_1}{a_2}\neq \dfrac{b_1}{b_2}}

where,

a1=3

a2=4

b1=1

b2=k

so..

\rightsquigarrow{\dfrac{a_1}{a_2}\neq \dfrac{b_1}{b_2}}

\rightsquigarrow{\dfrac{3}{4}\neq \dfrac{1}{k}}

\rightsquigarrow{3×k}\neq {1×4}

\rightsquigarrow{3k}\neq {4}

\rightsquigarrow{k}\neq \dfrac{4}{3}

\sf{\bold{\green{\underline{\underline{Answer}}}}}

\rightsquigarrow{\boxed{\orange{k\neq{\frac{4}{3}}}}}⠀⠀

\sf{\bold{\blue{\underline{\underline{Notes:-}}}}}

\rightsquigarrowIf a pair of equations:

    a₁x + b₁y + c₁ = 0

    a₂x + b₂y + c₂ = 0

\rightsquigarrowhas a unique solution and is consistent,

\red{\dfrac{a_1}{a_2}\neq \dfrac{b_1}{b_2}}

\rightsquigarrowHas infinite number of solutions and is consistent,

\red{\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2} }

\rightsquigarrowHas no solution and is inconsistent,

\red{\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}\neq \dfrac{c_1}{c_2} }

Similar questions