English, asked by helo52, 5 months ago

find the value of 'k'
3x+ y =7
4x+ky =9 has a unique solution​

Answers

Answered by DILhunterBOYayus
23

Explanation:

\sf{\bold{\blue{\underline{\underline{Given}}}}}

● pair of equation

• 3x+y=7

• 4x+ky=9

⠀⠀⠀⠀

\sf{\bold{\red{\underline{\underline{To\:Find}}}}}

■ Value of "k".??■⠀⠀⠀⠀

\sf{\bold{\purple{\underline{\underline{Solution}}}}}

➔ Here it is given that the pair of equations have a unique solution

➔ If a pair of equations have a unique solution we know that,

 ::\implies\boxed{\orange{\dfrac{a_1}{a_2}\neq \dfrac{b_1}{b_2}}}

where,

a1=3

a2=4

b1=1

b2=k

so..

\rightsquigarrow{\dfrac{a_1}{a_2}\neq \dfrac{b_1}{b_2}}

\rightsquigarrow{\dfrac{3}{4}\neq \dfrac{1}{k}}

\rightsquigarrow{3×k}\neq {1×4}

\rightsquigarrow{3k}\neq {4}

\rightsquigarrow{k}\neq \dfrac{4}{3}

\sf{\bold{\green{\underline{\underline{Answer}}}}}

\rightsquigarrow{\boxed{\orange{k\neq{\frac{4}{3}}}}}⠀⠀

\sf{\bold{\blue{\underline{\underline{Notes:-}}}}}

\rightsquigarrowIf a pair of equations:

    a₁x + b₁y + c₁ = 0

    a₂x + b₂y + c₂ = 0

\rightsquigarrowhas a unique solution and is consistent,

\red{\dfrac{a_1}{a_2}\neq \dfrac{b_1}{b_2}}

\rightsquigarrowHas infinite number of solutions and is consistent,

\red{\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2} }

\rightsquigarrowHas no solution and is inconsistent,

\red{\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}\neq \dfrac{c_1}{c_2} }

Answered by niharika276sharma
0

Explanation:

3x +y =7 ( multiple by 4)

4x + ky = 9 ( multiple by 3)

12x + 4y = 28

12x + 3ky = 27

y( 4-3k) = 1 ( by eliminated method)

y = 1/ 4-3k

put value in 3x + y =7

3x +1/4-3k = 7

3x = 7- 1/ 4- 3k

3x = 7( 4-3k) - 1 / 4-3k

3x = 28 - 21k -1 / 4- 3k

3x = 27 - 21 k / 4- 3k

x = 9 - 7 k / 4- 3 k

put the value x and y

3x +y =7

3 * ( 9-7k) / 4- 3k ) + 1/ 4-3k = 7

27 -21k / 4-3k + 1/ 4-3 k = 7

28 -21 k = 7 * ( 4- 3k)

28 - 21 k = 28 - 21 k

k = 0

Similar questions