Math, asked by SuNaInA1735, 10 months ago

Find the value of k:-

cotA/1+cosecA-cotA/1-cosecA=k/cosA​

Answers

Answered by msdhewa2
1

Step-by-step explanation:

hope this helps you please mark as brainliest plz....

Attachments:
Answered by Anonymous
7

solution ;

 \frac{ \cot(x) }{1 +  \csc(x) }  -   \frac{ \cot(x) }{1 -  \csc(x) }  =  \frac{k}{ \cos(x) }

solve LHS;

 \frac{ \cot(x) }{ 1 + \csc(x) }  -  \frac{ \cot(x) }{ 1 - \csc(x) }

 =  \frac{ \frac{ \cos(x) }{ \sin(x) } }{1 +  \frac{1}{ \sin(x) } }  -  \frac{ \frac{ \cos(x) }{ \sin(x) } }{1 -  \frac{1}{ \sin(x) } }

 =  \frac{ \cos(x) }{1 +  \sin(x) }  -  \frac{ \cos(x) }{ \sin(x) - 1 }

 =  \frac{ \cos(x) }{1 +  \sin(x) }   +  \frac{ \cos(x) }{ 1 - \sin(x) }

 =  \frac{ \cos(x)( 1 - \sin(x ) ) +  \cos(x)   (1 +  \sin(x)) }{1 -  \sin {}^{2} (x) }

 =  \frac{ \cos(x) -  \cos(x) \sin(x)    +  \cos(x)  \sin(x)   +  \cos(x)  }{ \cos {}^{2} ( x ) }

 =  \frac{2}{ \cos(x) }

so the value of k = 2

follow me

mark answer as brainlist

Similar questions