Math, asked by kanthabadi71, 11 months ago

find the value of k for quadratic equation kxsquare+(2k+4)x+9 so that they have two equal root​

Answers

Answered by vermasewati09
3

Answer:

write the discriminant =0 and.solve

Answered by jitendra420156
0

Therefore the value k is = 4 or 1.

Step-by-step explanation:

Given quadratic equation is

k x^2+(2k+4)x+9=0

If the equation ax^2+bx+c=0 has two equal roots. Then the value of b^2-4ac will be zero.

Here a=k

b=(2k+4)

c=9

Therefore b^2-4ac=0

          \Rightarrow (2k+4)^2-4\times k\times 9=0    

          \Rightarrow 4k^2+16k+16 - 36k =0

          \Rightarrow 4k^2-20k+16=0

          \Rightarrow 4(k^2-5k+4)=0

          \Rightarrow k^2-5k+4=0

          \Rightarrow k^2-4k-k+4=0

          \Rightarrow k(k-4)-1(k-4)=0

          \Rightarrow (k-4)(k-1)=0

          \Rightarrow k= 4,1

Therefore the value k is = 4 or 1.

         

Similar questions