Find the value of k for which (-4)is a zero of the polynomial x square minus x-(2k+2)
Answers
- -4 is a zero of polynomial x² - x -(2k + 2)
- Value of k
- p(x) = x² - x - (2k+2)
- Given zero = -4
- so, x = -4
◈ putting value of x = -4 in the given polynomial.
»» x² - x -2k - 2 = 0
»» (-4)² -(-4) - 2k - 2 = 0
»» 16 + 4 - 2k - 2 = 0
»» 20 - 2 - 2k = 0
»» 18 - 2k = 0
»» 2k = 18
»» k = 18/2
- ≫ k = 9
- p(x) = x² - x -(2k +2)
➡️ putting value of k = 9 in the given polynomial.
»» x² - x -(2×9+2)
»» x² - x - (18 + 2)
- »» x² - x - 20
Now finding zeroes of p(x) = x² - x - 20
»» x² - x - 20
»» x² + 4x - 5x - 20
»» x(x + 4) - 5(x + 4)
»» (x - 5)(x + 4)
- » x = 5 or x = -4
So, we get the same zero xv= -4 that is given in the Question .so value of k = 9 is correct.
Answer:
k = 9
Step-by-step explanation:
p(x) = x² - x - 2k - 2
-4 is a zero of p(x). → p(-4) = 0
p(-4) = (-4)² - (-4) - 2k - 2 = 0
16 + 4 - 2k - 2 = 0
18 - 2k = 0
2k = 18
k = 18/2
k = 9