Math, asked by ananya0517, 17 hours ago

Find the value of k for which 5x – 2y + 4 = 0 and 3kx + (4 – 2k)y + 12 = 0 has infinitely many solutions​.please answer it as fast as possible

Answers

Answered by DeeznutzUwU
1

       \text{\huge \bf \underline{Answer:}}

       \text{The two given equations are:}

       5x - 2y + 4 = 0

       3kx + (4-2k)y + 12 = 0

       \text{First, we have to check the values of }\dfrac{a_1}{a_2}, \dfrac{b_1}{b_2}, \dfrac{c_1}{c_2}

       \text{In our case;}

       a_1 = 5 \: \: , \: \: b_1 = -2\: \: , \: \: c_1 = 4

       a_2 = 3k \: \: , \: \: b_2 = 4-2k\: \: , \: \: c_2 = 12

\implies \dfrac{a_1}{a_2} = \dfrac{5}{3k}

\implies \dfrac{b_1}{b_2} = \dfrac{-2}{4-2k}

\implies \dfrac{c_1}{c_2} = \dfrac{4}{12} = \dfrac13

       \text{It is given that the pair of equations must have infinitely many solutions}

\implies \dfrac{a_1}{a_2} = \dfrac{b_1}{b_2} = \dfrac{c_1}{c_2}

\implies \dfrac{5}{3k} = \dfrac{-2}{4-2k} = \dfrac13

       \text{Taking the first two}

\implies \dfrac{5}{3k} = \dfrac{-2}{4-2k}

\implies 5(4-2k) = -2(3k)

\implies 20 - 10k = -6k

\implies 20 - 10k + 6k = 0

\implies 20 - 4k = 0

\implies 20 = 4k

\implies \dfrac{20}{4} = k

\implies \boxed{\boxed{5 = k}}

Similar questions