Math, asked by masihmark, 9 months ago

Find the value of k for which each of the following pairs of equation have infinite many solution :
2x + (k-2)y = k
6x + ( 2k -1)y= 2k +5

Answers

Answered by kavithaselvam835
0

Answer:

Let A={1,2,3,4 } and B=N , let f:A → B be defined by f(x)= x2 then

i. Find the range of f (ii)Identify the type of function

Step-by-step explanation:

Answered by pulakmath007
29

\huge\boxed{\underline{\underline{\green{Solution}}}} </p><p>

 \displaystyle \:  \longmapsto \:  \: FORMULA TO BE IMPLEMENTED

A pair of Straight Lines

 \displaystyle \: a_1x+b_1y+c_1=0   \: and \:  \: a_2x+b_2y+c_2=0

have infinite number of solutions if  \displaystyle \:  \:  \frac{a_1}{a_2}  = \frac{b_1}{b_2}=\frac{c_1}{c_2}

 \displaystyle \:  \longmapsto \:  \: CALCULATION :

Given pair of linear equations

2x +(k- 2) y = k  \:  \: and  \:  \: 6x + (2k-1)y =2k+5

Comparing with

 \displaystyle \: a_1x+b_1y+c_1=0   \: and \:  \: a_2x+b_2y+c_2=0

We get

 \displaystyle \: a_1 = 2 \:   , \: b_1 =  k- 2 \:    ,  c_1= - k \: and \:  \: a_2 = 6 \:    ,  \:  b_2 = 2k -1\:  ,   \:  \: c_2=-(2k+5)

So the given pair of Straight Lines have infinite number of solutions if

  \displaystyle \: \frac{2}{6}  =  \frac{k - 2}{2k - 1}  =  \frac{k}{2k + 5}

Now

  \displaystyle \: \frac{2}{6}  =  \frac{k - 2}{2k - 1}   \:  \: gives

4k - 2 = 6k - 12

 \implies \: 2k = 10

 \implies \: k \:  = 5

Again

  \displaystyle \: \frac{2}{6}  =   \frac{k}{2k + 5}  \:   \:  \:  \: \: gives

 \implies \:6k =4 k + 10

 \implies \: 2k = 10

 \implies \: k = 5

So the required value of k is 5

Similar questions