Find the value of k for which given quadratic
equations are real and equal roots.
k^2 x^2– 2(k–1)x + 4 = 0
Answers
Answer:
Correct option is true
k
k 2
k 2 x
k 2 x 2
k 2 x 2 −2(2k−1)x+4=0
k 2 x 2 −2(2k−1)x+4=0⇒ Here, a=k
k 2 x 2 −2(2k−1)x+4=0⇒ Here, a=k 2
k 2 x 2 −2(2k−1)x+4=0⇒ Here, a=k 2 ,b=−2(2k−1),c=4
k 2 x 2 −2(2k−1)x+4=0⇒ Here, a=k 2 ,b=−2(2k−1),c=4⇒ It is given that roots are real and equal.
k 2 x 2 −2(2k−1)x+4=0⇒ Here, a=k 2 ,b=−2(2k−1),c=4⇒ It is given that roots are real and equal.∴ b
k 2 x 2 −2(2k−1)x+4=0⇒ Here, a=k 2 ,b=−2(2k−1),c=4⇒ It is given that roots are real and equal.∴ b 2
k 2 x 2 −2(2k−1)x+4=0⇒ Here, a=k 2 ,b=−2(2k−1),c=4⇒ It is given that roots are real and equal.∴ b 2 −4ac=0
k 2 x 2 −2(2k−1)x+4=0⇒ Here, a=k 2 ,b=−2(2k−1),c=4⇒ It is given that roots are real and equal.∴ b 2 −4ac=0⇒ [2(2k−1)]
k 2 x 2 −2(2k−1)x+4=0⇒ Here, a=k 2 ,b=−2(2k−1),c=4⇒ It is given that roots are real and equal.∴ b 2 −4ac=0⇒ [2(2k−1)] 2
k 2 x 2 −2(2k−1)x+4=0⇒ Here, a=k 2 ,b=−2(2k−1),c=4⇒ It is given that roots are real and equal.∴ b 2 −4ac=0⇒ [2(2k−1)] 2 −4(k
k 2 x 2 −2(2k−1)x+4=0⇒ Here, a=k 2 ,b=−2(2k−1),c=4⇒ It is given that roots are real and equal.∴ b 2 −4ac=0⇒ [2(2k−1)] 2 −4(k 2
k 2 x 2 −2(2k−1)x+4=0⇒ Here, a=k 2 ,b=−2(2k−1),c=4⇒ It is given that roots are real and equal.∴ b 2 −4ac=0⇒ [2(2k−1)] 2 −4(k 2 )(4)=0
k 2 x 2 −2(2k−1)x+4=0⇒ Here, a=k 2 ,b=−2(2k−1),c=4⇒ It is given that roots are real and equal.∴ b 2 −4ac=0⇒ [2(2k−1)] 2 −4(k 2 )(4)=0⇒ 4(4k
k 2 x 2 −2(2k−1)x+4=0⇒ Here, a=k 2 ,b=−2(2k−1),c=4⇒ It is given that roots are real and equal.∴ b 2 −4ac=0⇒ [2(2k−1)] 2 −4(k 2 )(4)=0⇒ 4(4k 2
k 2 x 2 −2(2k−1)x+4=0⇒ Here, a=k 2 ,b=−2(2k−1),c=4⇒ It is given that roots are real and equal.∴ b 2 −4ac=0⇒ [2(2k−1)] 2 −4(k 2 )(4)=0⇒ 4(4k 2 −4k+1)−16k
k 2 x 2 −2(2k−1)x+4=0⇒ Here, a=k 2 ,b=−2(2k−1),c=4⇒ It is given that roots are real and equal.∴ b 2 −4ac=0⇒ [2(2k−1)] 2 −4(k 2 )(4)=0⇒ 4(4k 2 −4k+1)−16k 2
k 2 x 2 −2(2k−1)x+4=0⇒ Here, a=k 2 ,b=−2(2k−1),c=4⇒ It is given that roots are real and equal.∴ b 2 −4ac=0⇒ [2(2k−1)] 2 −4(k 2 )(4)=0⇒ 4(4k 2 −4k+1)−16k 2 =0
k 2 x 2 −2(2k−1)x+4=0⇒ Here, a=k 2 ,b=−2(2k−1),c=4⇒ It is given that roots are real and equal.∴ b 2 −4ac=0⇒ [2(2k−1)] 2 −4(k 2 )(4)=0⇒ 4(4k 2 −4k+1)−16k 2 =0⇒ 16k
k 2 x 2 −2(2k−1)x+4=0⇒ Here, a=k 2 ,b=−2(2k−1),c=4⇒ It is given that roots are real and equal.∴ b 2 −4ac=0⇒ [2(2k−1)] 2 −4(k 2 )(4)=0⇒ 4(4k 2 −4k+1)−16k 2 =0⇒ 16k 2
k 2 x 2 −2(2k−1)x+4=0⇒ Here, a=k 2 ,b=−2(2k−1),c=4⇒ It is given that roots are real and equal.∴ b 2 −4ac=0⇒ [2(2k−1)] 2 −4(k 2 )(4)=0⇒ 4(4k 2 −4k+1)−16k 2 =0⇒ 16k 2 −16k+4−16k
k 2 x 2 −2(2k−1)x+4=0⇒ Here, a=k 2 ,b=−2(2k−1),c=4⇒ It is given that roots are real and equal.∴ b 2 −4ac=0⇒ [2(2k−1)] 2 −4(k 2 )(4)=0⇒ 4(4k 2 −4k+1)−16k 2 =0⇒ 16k 2 −16k+4−16k 2
k 2 x 2 −2(2k−1)x+4=0⇒ Here, a=k 2 ,b=−2(2k−1),c=4⇒ It is given that roots are real and equal.∴ b 2 −4ac=0⇒ [2(2k−1)] 2 −4(k 2 )(4)=0⇒ 4(4k 2 −4k+1)−16k 2 =0⇒ 16k 2 −16k+4−16k 2 =0
k 2 x 2 −2(2k−1)x+4=0⇒ Here, a=k 2 ,b=−2(2k−1),c=4⇒ It is given that roots are real and equal.∴ b 2 −4ac=0⇒ [2(2k−1)] 2 −4(k 2 )(4)=0⇒ 4(4k 2 −4k+1)−16k 2 =0⇒ 16k 2 −16k+4−16k 2 =0⇒ −16k=−4
k 2 x 2 −2(2k−1)x+4=0⇒ Here, a=k 2 ,b=−2(2k−1),c=4⇒ It is given that roots are real and equal.∴ b 2 −4ac=0⇒ [2(2k−1)] 2 −4(k 2 )(4)=0⇒ 4(4k 2 −4k+1)−16k 2 =0⇒ 16k 2 −16k+4−16k 2 =0⇒ −16k=−4∴ k=
k 2 x 2 −2(2k−1)x+4=0⇒ Here, a=k 2 ,b=−2(2k−1),c=4⇒ It is given that roots are real and equal.∴ b 2 −4ac=0⇒ [2(2k−1)] 2 −4(k 2 )(4)=0⇒ 4(4k 2 −4k+1)−16k 2 =0⇒ 16k 2 −16k+4−16k 2 =0⇒ −16k=−4∴ k= 4
k 2 x 2 −2(2k−1)x+4=0⇒ Here, a=k 2 ,b=−2(2k−1),c=4⇒ It is given that roots are real and equal.∴ b 2 −4ac=0⇒ [2(2k−1)] 2 −4(k 2 )(4)=0⇒ 4(4k 2 −4k+1)−16k 2 =0⇒ 16k 2 −16k+4−16k 2 =0⇒ −16k=−4∴ k= 41
k 2 x 2 −2(2k−1)x+4=0⇒ Here, a=k 2 ,b=−2(2k−1),c=4⇒ It is given that roots are real and equal.∴ b 2 −4ac=0⇒ [2(2k−1)] 2 −4(k 2 )(4)=0⇒ 4(4k 2 −4k+1)−16k 2 =0⇒ 16k 2 −16k+4−16k 2 =0⇒ −16k=−4∴ k= 41
k 2 x 2 −2(2k−1)x+4=0⇒ Here, a=k 2 ,b=−2(2k−1),c=4⇒ It is given that roots are real and equal.∴ b 2 −4ac=0⇒ [2(2k−1)] 2 −4(k 2 )(4)=0⇒ 4(4k 2 −4k+1)−16k 2 =0⇒ 16k 2 −16k+4−16k 2 =0⇒ −16k=−4∴ k= 41
k 2 x 2 −2(2k−1)x+4=0⇒ Here, a=k 2 ,b=−2(2k−1),c=4⇒ It is given that roots are real and equal.∴ b 2 −4ac=0⇒ [2(2k−1)] 2 −4(k 2 )(4)=0⇒ 4(4k 2 −4k+1)−16k 2 =0⇒ 16k 2 −16k+4−16k 2 =0⇒ −16k=−4∴ k= 41 ∴ We can see value of k given in question is correct.