Math, asked by Nanny55, 1 year ago

find the value of k for which quadratic equation 3 x square minus kx + 5 is equal to zero has two equal roots

Answers

Answered by Hemakalash
11
hope this will help you
Attachments:
Answered by BrainlyConqueror0901
8

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:k=\pm 2\sqrt{15}}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\   \tt{ : \implies 3x^{2} -kx +5 = 0 }\\  \\ \red{ \underline \bold{To \: Find : }} \\    \tt{: \implies  value \: of \: k = ?}

• According to given question :

  \tt{ : \implies 3x^{2} -kx +5= 0} \\   \\   \tt{\circ  \: a = 3} \\ \\  \tt{\circ \: b = -k}\\\\ \tt{\circ \:c = 5}\\ \\   \bold{Discriminant \:  = 0} \\  \\     \tt{:  \rightarrow \: D \implies  {b}^{2} - 4ac = 0 } \\  \\    \tt{: \implies  {b}^{2}  - 4ac = 0} \\  \\  \text{Putting \: the \: given \: values} \\   \tt{: \implies (-k)^{2}  -  4\times3 \times 5= 0 } \\  \\    \tt{: \implies \:  {k}^{2}  -60 = 0 } \\  \\  \tt{ : \implies \:   ({k}^{2}   - (2\sqrt{15})^{2}) = 0 } \\\\ \tt{: \implies (k-2\sqrt{15})(k+2\sqrt{15})} \\  \\   \tt{: \implies k=2\sqrt{15}\:and\:-2\sqrt{15}} \\  \\   \green{\tt{: \implies k = \pm 2\sqrt{15} }}

Similar questions