Math, asked by Sahilpreetsir, 5 months ago

Find the value of k for which the distance between the points (2,-3) and (k,5) is 10​

Answers

Answered by vipashyana1
1

Answer:

k = 8

Step-by-step explanation:

Let  \: the  \: points  \: be \: A \: and  \: B \\ A=(2,-3), B=(k, 5) \\ x1 = 2,  \: x2=k, \: y1=(-3), \: y2=5\\  Distance  \: between \:  AB=10 \: units \\  \sqrt{ {(x2 - x1)}^{2} + {(y2 - y1)}^{2}}  = 10 \\  \sqrt{ {(k - 2)}^{2} +  {(5 + 3)}^{2}}  = 10 \\ Squaring  \: on  \: both \:  the \:  sides  \\  {( \sqrt{ {(k - 2)}^{2}  +  {(8)}^{2} } )}^{2}  =  {(10)}^{2}  \\   {(k - 2)}^{2}   +  {(8)}^{2}  =  {(10)}^{2}  \\  {k}^{2}  - 4k + 4 + 64 = 100 \\  {k}^{2}  - 4k = 100 - 4 - 64 \\  {k}^{2}  - 4k = 32 \\  {k}^{2}  - 4k  -  32 = 0  \\ {k}^{2}  - 8k + 4k - 32 = 0\\ ({k}^{2}  - 8k) + (4k - 32) = 0 \\ k(k - 8) + 4(k - 8) = 0 \\ (k - 8)(k + 4) = 0 \\ (k - 8 = 0)(k + 4 = 0) \\ k = 8 \: and \: k = ( - 4) \\ Therefore,  \: the \:  value \:  of  \: k  \: is  \: 8.

Similar questions