Math, asked by roshinireddyr999, 5 months ago

Find the value of’ k ‘ for which the distance between the two points A (3 , -1 )and
B (11 , k) is 10 units
plz solve it

Answers

Answered by Anonymous
118

Given :

The distance between the two points A (3 , -1 )and B (11 , k) is 10 units

To find :

  • Value of " k "

Solution :

★ Coordinate of two points is given ★

  • A = (3, - 1)
  • B = (11, k)
  • AB = 10 units

Applying distance formula

→ AB = √(x₂ - x₁)² + (y₂ - y₁)²

  • x₁ = 3
  • x₂ = 11
  • y₁ = - 1
  • y₂ = k

Substitute all the values

→ 10 = √(11 - 3)² + (k - (-1))²

→ 10 = √(8)² + (k + 1)²

  • Apply identity
  • (a + b)² = a² + b² + 2ab

→ 10 = √64 + k² + 1 + 2k

  • Squaring both the sides

→ (10)² = (√65 + k² + 2k)²

→ 100 = 65 + k² + 2k

→ 100 - 65 = k² + 2k

→ 35 = k² + 2k

→ k² + 2k - 35 = 0

  • Split middle term

→ k² + 7k - 5k - 35 = 0

→ k(k + 7) - 5(k + 7) = 0

→ (k + 7)(k - 5) = 0

Either

→ k + 7 = 0

→ k = - 7

Or

→ k - 5 = 0

→ k = 5

•°• Value of " k " = - 7 or 5

________________________________

Answered by Anonymous
34

{\large{\bold{\rm{\underline{Understanding \; the \; question}}}}}

★ This question says that we have to find the value of k for which the distance between the two points A(3,-1)and B(11,k) is 10 units.

{\large{\bold{\rm{\underline{Given \; that}}}}}

★ The distance between the two points A(3,-1)and B(11,k) is 10 units.

{\large{\bold{\rm{\underline{To \; find}}}}}

★ Value of k

{\large{\bold{\rm{\underline{Solution}}}}}

★ Value of k = -7 or 5

{\large{\bold{\rm{\underline{Using \; concept}}}}}

★ Algebraic identity.

★ Middle term splitting method.

★ Distance formula.

{\large{\bold{\rm{\underline{Full \; Solution}}}}}

~ According to the question, the cordinate of the two points are given,

●↝ A(3,-1)

●↝ B(11,k)

●↝ AB = 10 units

_________________

~ Now let's use distance formula..!

{\boxed{\boxed{\green{\sf{Distance \: = \: \sqrt{(x_{2}-x_{1})}^{2} + (y_{2} - y_{1})^{2}}}}}}

{\bf{Here,}}

{\sf{\bull \leadsto x_{2} \: is \: 11}}

{\sf{\bull \leadsto x_{1} \: is \: 3}}

{\sf{\bull \leadsto  y_{2} \: is \: k}}

{\sf{\bull \leadsto y_{1} \: is \: -1}}

_________________

~ Now let's put the values..!

{\tt{:\implies Distance \: = \: \sqrt{(x_{2}-x_{1})}^{2} + (y_{2} - y_{1})^{2}}}

{\tt{:\implies AB \: = \: \sqrt{(x_{2}-x_{1})}^{2} + (y_{2} - y_{1})^{2}}}

{\tt{:\implies AB \: = \: \sqrt{(11-3)}^{2} + (k-(-1))^{2}}}

{\tt{:\implies AB \: = \: \sqrt{(8)}^{2} + (k+)^{2}}}

_________________

~ Now we have to use an algebraic identity here. Let's use the given identity..!

{\boxed{\boxed{\green{\sf{(a+b)^{2} = a^{2} + b^{2} + 2ab}}}}}

~ Now let's put the values..!

{\tt{:\implies 10 \: \sqrt{64} + k^{2} + 1 + 2k}}

{\tt{:\implies 10^{2} = (\sqrt{65} + k^{2} + 2k)^{2}}}

{\tt{:\implies 100 = 65 + k^{2} + 2k}}

{\tt{:\implies 100 - 65 = k^{2} + 2k}}

{\tt{:\implies 35 = k^{2} + 2k}}

{\tt{:\implies k^{2} + 2k - 35 = 0}}

_________________

~ Henceforth, we get a quadratic equation as k² + 2k - 35 = 0. To solve this let us use middle term splitting method..!

{\tt{:\implies k^{2} + 7k - 5k - 35 = 0}}

{\tt{:\implies k(k+7) - 5(k+7) = 0}}

{\tt{:\implies (k+7)(k-5) = 0}}

_________________

~ Now let's solve it..!

{\bf{Either,}}

{\tt{:\implies k + 7 = 0}}

{\tt{:\implies k = 0 - 7}}

{\tt{:\implies k = -7}}

{\bf{Or}}

{\tt{:\implies k - 5 = 0}}

{\tt{:\implies k = 0 + 5}}

{\tt{:\implies k = 5}}

_________________

{\frak{Henceforth, \: -7 \: or \: 5 \: is \: the \: value \: of \: k}}

{\large{\bold{\rm{\underline{Information \; about \; topic}}}}}

Knowledge about Quadratic equations -

★ Sum of zeros of any quadratic equation is given by ➝ α+β = -b/a

★ Product of zeros of any quadratic equation is given by ➝ αβ = c/a

★ A quadratic equation have 2 roots

★ ax² + bx + c = 0 is the general form of quadratic equation

_________________

Algebraic identities –

\; \; \; \; \; \; \;{\sf{\bold{\leadsto (A+B)^{2} \: = \: = A^{2} \: + \: 2AB \: + B^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto (A-B)^{2} \: = \: = A^{2} \: - \: 2AB \: + B^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto A^{2} \: - B^{2} \: = \: (A+B) \: (A-B)}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto (A+B)^{2} \: = (A-B)^{2} \: +4AB}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto (A-B)^{2} \: = (A+B)^{2} \: -4AB}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto (A+B)^{3} \: = A^{3} + \: 3AB \: (A+B) \:+ B^{3}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto (A-B)^{3} \: = A^{3} - \: 3AB \: (A-B) \: + B^{3}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto A^{3} \: + B^{3} = \: (A+B) (A^{2} - AB + B^{2}}}}

_________________

Factorised identities -

\begin{gathered}\\\;\sf{\leadsto\;\;(a\:+\;b)^{2}\; =\;a^{2}\:+\:b^{2}\:+\:2ab}\end{gathered}

\begin{gathered}\\\;\sf{\leadsto\;\;(a\:-\:b)^{2}\;=\;a^{2}\:+\:b^{2}\:-\:2ab}\end{gathered}

\begin{gathered}\\\;\sf{\leadsto\;\;(a\:+\:b\:+\:c)^{2}\;=\;a^{2}\:+\:b^{2}\:+\:c^{2}\:+\:2ab\:+\:2bc\:+\:2ac}\end{gathered}

\begin{gathered}\\\;\sf{\leadsto\;\;(a\:+\;b)^{3}\;=\;a^{3}\:+\:b^{3}\:+\:3ab(a\:+\:b)}\end{gathered}

\begin{gathered}\\\;\sf{\leadsto\;\;(a\:-\;b)^{3}\;=\;a^{3}\:-\:b^{3}\:-\:3ab(a\:-\:b)}\end{gathered}

\begin{gathered}\\\;\sf{\leadsto \;\;(a+b)^{2} \: = \: a^{2} + 2ab + b^{2}}\end{gathered}

\begin{gathered}\\\;\sf{\leadsto \;\;(a-b)^{2} \: = a^{2} - 2ab + b^{2}}\end{gathered}

\begin{gathered}\\\;\sf{\leadsto \;\;(a+b)(a-b) \: = \: a^{2} - b^{2}}\end{gathered}

_________________

Similar questions