Math, asked by raghuvendrakumar34, 9 months ago

find the value of k for which the equation 2x2-5x-k=0 is equal to

Answers

Answered by nilesh102
4

\textbf{\huge\underline{\underline\red{solution} : -  }} \\  \\ =  >  \bold \blue{2{x}^{2}  - 5x - k = 0}   \\  \\  \bold\red{\: compare \: the \: given \: equation \:} \\  \bold\red{with \: \:  \:  \purple{ a {x}^{2} + bx + c }}  \\  \\  \bold\blue{hence \:  \:  \:  \: a = 2 \:  \:  \: \:   \: b =  - 5 \:  \:  \:  \: c = \:- k} \\  \\  \bold\purple{we \: use\:discriminate \: formula } \\  \\   =  > \bold\red{ {b}^{2} - 4ac = 0 } \\  \\  =  > \bold\red{{( - 5)}^{2}  - 4(2)(-k) = 0} \\  \\ =  > \bold\red{25+8(k) = 0} \\  \\ =  > \bold\red{8(k) = -  25}  \\  \\ =  >\bold\red{ k=  -\frac{25}{8} }  \\  \\  \fbox  \bold\purple{ \: i \: hope \: it \: helps \: you.}

Answered by Anonymous
4

Solution :

Given :-

 \implies \sf 2{x}^{2}  - 5x - k = 0

On comparing with  \sf a{x}^{2}+ bx +c = 0

We get

 \bullet  \:  \sf a = 2 \:  \:  \:  \: \:  \:  \:  \:   \:\bullet  \: b =  - 5 \:  \:  \:  \:  \:  \:  \:  \:\bullet  \: c =-k

By using discriminate formula

 \large\implies \underline{ \orange{ \sf{b}^{2}  - 4ac = 0} }\\  \\ \implies \sf\  {( - 5)}^{2} - 4 \times 2 \times ( -k) = 0 \\  \\\implies \sf 25  + 8k = 0 \\  \\\implies \sf 8k = 25 \\  \\  \implies\underline{\boxed{ \sf \green{ k = - \frac{25}{8}}}}

Similar questions