Math, asked by amankumarsingh151220, 10 months ago

Find the value of k for which the equation 4x^+kn+8=0 has real and equal root. whoever will answer I will mark you as brainlist plzz answer if anyone knows.​

Answers

Answered by Anonymous
0

\huge\underline\mathbb{\red Q\pink{U}\purple{ES} \blue{T} \orange{IO}\green{N :}}

Find the value of k for which the equation 4x² + kx + 8 = 0 has real and equal root.

\huge\underline\mathbb{\red S\pink{O}\purple{LU} \blue{T} \orange{IO}\green{N :}}

Given equation,

↪ 4x² + kx + 8 = 0

To find,

  • Value of k.

Let,

  • a = 4
  • b = k
  • c = 8

\tt\: By  \: using  \: Discrimination  \: (∆)  \: formula

\tt\blue{ ↪ b^{2} - 4ac = 0}

  • Substitute the values.

\sf\:⟹ (k)² - 4(4)(8) = 0

\sf\:⟹ k² - 128 = 0

\sf\:⟹ k² = 0 + 128

\sf\:⟹ k² = 128

\sf\:⟹ k = \sqrt{128}

\sf\:⟹ k = 8\sqrt{2}

\underline{\boxed{\bf{\purple{∴ Hence, \:  the \:  value  \: of \:  k  \: is “  \: 8\sqrt{2} \: ”}}}}

⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇

Extra information,

\bf\: ◼ \:  ∆ < 0, no \:  real \:  roots.

\bf\: ◼ \:  ∆ > 0, two  \: distinct \:  real \:  roots.

\bf\: ◼  \: ∆ = 0, two \:  equal \:  real \:  roots.

⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆

Similar questions