Math, asked by SangeethaBannu8301, 10 months ago

Find the value of k for which the following quadratic equation x2-5x+k=0 has real roots

Answers

Answered by BrainlyConqueror0901
3

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:k=\frac{-25}{4}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}}\\ \tt: \implies {x}^{2}  - 5x + k = 0 \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Value \: of \: k =?

• According to given question :

 \tt \circ \:  {x}^{2}   - 5x + k = 0 \\  \\  \tt \circ \: a = 1 \:  \:  \:  \:  \: b =  - 5 \:  \:  \:  \:  \:  \: c = k\\  \\  \bold{As \: we \: know \: that} \\   \\  \text{For \: real \: roots} \to \\  \tt:  \implies Discriminant = 0 \\  \\  \tt:  \implies  {b}^{2}  - 4ac = 0 \\  \\  \tt:  \implies  {( - 5)}^{2}  - 4 \times 1 \times k = 0 \\  \\ \tt:  \implies 25 - 4k = 0 \\  \\ \tt:  \implies 4k =  - 25 \\  \\  \green{\tt:  \implies k =  \frac{ - 25}{4} } \\  \\   \blue{\bold{Some \: related \: formula }} \\  \orange{ \tt \circ \: x =  \frac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a} }

Answered by NITESH761
1

Step-by-step explanation:

\sf \bf We \: have,

\sf x^2 -5x+k=0

\sf \bf We \: know \: that,

\sf For \:  real  \: roots,

\sf \underline{\boxed{\sf \bf b^2-4ac≥0}}

\sf : \implies (-5)^2-4(1)(k)≥0

\sf : \implies 25-4k≥0

\sf : \implies 4k-25≤0

\sf : \implies \underline{\boxed{\sf \bf{k ≤\dfrac{25}{4}}}}

Similar questions