Math, asked by neetanongrang210, 1 month ago

Find the value of 'k' for which the following systems of linear equations have infinite number of solutions:
2x+ky=3
(k+5)x+25y=2k+5

Answers

Answered by llTheUnkownStarll
2

\large\sf {\orange {\underline{ \pink { \underline{\pink{Go \:  through \:  the \: above \:  attachment }}}}}}

Thank you!

@itzshivani

Attachments:
Answered by vaishnavi1177
2

Given:

Pair of linear equation having infinite number of solution

2x+ky=3

(k+5)x+25y=2k+5

To find :

value of k

Solution:

we  \: \: know \:  \: that  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  For \:  \: finite \:  \: solution \:  , \:  \:  \:  \:  \:  \:  \:  \: \\  \frac{a1}{a2}  =  \frac{b1}{b2}  =  \frac{c1}{c2} \\   \\  \frac{2}{k + 5}  =  \frac{k}{25}  =  \frac{ - (3)}{ - (2k + 5)}  \\  \\  \frac{2}{k + 5}  =  \frac{k}{25}  \:  \:  \:  or \:  \:  \:  \frac{2}{k + 5}  =  \frac{3}{2k + 5}  \\  \\ 50 =  {k}^{2}  + 5k \:  \:  \: or \:  \:  \: 4k + 10 = 3k + 15 \\  \\  {k}^{2}  + 5k - 50 = 0 \:  \:  \: or \:  \:  \: 4k - 3k = 15 - 10 \\  \\  {k}^{2}  + 10k - 5k - 50 = 0 \:  \:  \: or \:  \:  \: k = 5 \\  \\ k(k + 10) - 5(k + 10) = 0 \:  \: or \:  \: k = 5  \\ \\ (k + 10)(k - 5) = 0 \:  \:  or \:  \: k = 5 \\  \\ k = 5, - 10 \:  \: \:   \:  \: or \:  \:  \:  \:  \: k = 5 \\  \\  thus \:  \:  k = 5

Similar questions