find the value of k for which the Given
equation has real and equal o
roots .
1)2x² - 10x+k=0 2) kx²5x+K=0
3) x^2+ k(4x+k-1) +2=0
4) x^2-2k( 1+3k] +7 (3+2k),,,5)kx(x-3)+9=0 ..6)kx(x- 2√5)+10=0
Answers
Answered by
0
Step-by-step explanation:
solution:>
for equal and real roots => b²= 4ac
(1) (-10)²= = 8k => k= 100/8= 12.5
(2) (±5)²= 4k² => k²= 25/4=> k= ±5/2
(3) (4k)²= k²-k+2 => 15k²+k-2=0
15k²+6k-5k-2=0
3k(5 k+2) - 1( 5k+2)=0
(5k+2) ( 3k-1)= 0=> k = - 2/5 and k= 1/3
(4) here b=0
4ac= 4[ -2k(1+3k)+7(3+2k)
=> 0 = 4[ -2k-6k²+21+14k]
=>. 4[ -6k²+12k+21]= 0
=> 2k²-4k-7= 0 dividing by - 12
k= [ 4±√(16-4×2×-7)] / 4
= ( 4± √-40)/4=> k= 1± (√-10)/2
(5) b²= (-3k)²= 9k²
4ac= 4×k×9= 36k
=> 9k²= 36k => 9k( k-4)=0
=> k=0 or k=4
(6) b²= (-2√5)²= 20,. 4ac= 4×k×10= 40k
=>. 20= 40k=>. k= 1/2
Similar questions