find the value of k for which the line y=x+2 meets the curve y^2 +(x+k)^2=2
Answer
Answers
Answered by
1
Answer:
k = 0
Step-by-step explanation:
y² + (x + k)² = 2 .... (1)
y = x + 2 .... (2)
(2) ----> (1)
(x + 2)² + (x + k)² = 2
x² + 4x + 4 + x² + 2xk + k² - 2 = 0
2x² + (4 + 2k)x + (k² + 2) = 0 .... (3)
a = 2, b = 4 + 2k, c = k² + 2
D = (4 + 2k)² - 4(2)(k² + 2) = 16 + 16k + 4k² - 8k² - 16 = 16k - 8k² = 8k(2 - k)
If 8k(2 - k) ≥ 0, then (3) has roots in set of real numbers
8k(2 - k) ≥ 0 ⇒ k ≥ 0 or k ≤ 2
(k = 0) ----> (3)
x² + 2x + 1 = 0 ⇔ (x + 1)² = 0 ⇒ x = - 1
(x = - 1, k = 0) ----> (1)
y² + (- 1)² = 2 ⇒ y = ± 1
(x = - 1) ----> (2)
y = - 1 + 2 = 1
Thus, if k = 0 the line y = x + 2 and the circle y² + (x + k)² = 2 have a common point (- 1, 1)
Similar questions