Math, asked by patelshaily6818, 1 year ago

Find the value of k for which the points (-5,1) (1,k) (4,-2) are collinear

Answers

Answered by MaheswariS
2

\underline{\textbf{Given:}}

\textsf{(-5,1), (1,k) and (4,-2) are collinear}

\underline{\textbf{To find:}}

\textsf{The value of k}

\underline{\textbf{Solution:}}

\textsf{Let the given points be A(-5,1), B(1,k) and C(4,-2)}

\textsf{Since the points are collinear,}

\textbf{Slope of AB = Slope of AC}

\implies\mathsf{\dfrac{k-1}{1+5}=\dfrac{-2-1}{4+5}}

\implies\mathsf{\dfrac{k-1}{6}=\dfrac{-3}{9}}

\implies\mathsf{\dfrac{k-1}{6}=\dfrac{-1}{3}}

\implies\mathsf{k-1=\dfrac{-6}{3}}

\implies\mathsf{k-1=-2}

\implies\mathsf{k=-2+1}

\implies\boxed{\bf\,k=-1}

\underline{\textbf{Answer:}}

\textbf{The value of k is -1}

\underline{\textbf{Formula used:}}

\boxed{\begin{minipage}{7cm}$\\\mathsf{Slope\;of\;line\;joining\;the\;points\;(x_1,y_1)\;and}\\\\\mathsf{(x_2,y_2)\;is\;\;\;m=\dfrac{y_2-y_1}{x_2-x_1}}\\$\end{minipage}}

Similar questions