Math, asked by anshudatyal2006, 5 months ago

find the value of k for which the points (6, -1) (4 ,0) and (2 , k) are collinear ​

Answers

Answered by Ataraxia
22

Solution :-

Let the points be A ( 6 , -1 ), B ( 4 , 0 ) and C ( 2 , k ).

Given that, the points are collinear.

That is,

Area of ΔABC = 0

\underline{\boxed{\bf Area \ of \ triangle = \dfrac{1}{2} \times [ \ x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)}}

Here :-

\bullet \sf \ x_1 = 6  \ ,  \  y_1 = -1

\bullet \sf \ x_2 = 4 \ , \ y_2 = 0

\bullet \sf \ x_3 = 2 \ , \ y_3 = k

: \implies \sf  \dfrac{1}{2} \times [ \ 6(0-k)+4(k-(-1))+2(-1-0)  \ ]  = 0

: \implies \sf \dfrac{1}{2} \times [ \ 6(0-k)+4(k+1)+2(-1-0) \ ] = 0

: \implies \sf \dfrac{1}{2} \times [ \ -6k+4k+4-2 \ ]  = 0

: \implies \sf \dfrac{1}{2} \times [ \ -2k+2 \ ] = 0

: \implies \sf -2k+2 = 0

: \implies \sf  -2k = -2

: \implies \bf k=1

Answered by NewGeneEinstein
3

Step-by-step explanation:

Take the points as A,B,C

  • A (6,-1)
  • B(4,0)
  • C(2,k)

Here

\sf x_1=6,y_1=-1

\sf x_2=4,y_2=0

\sf x_3=2,y_3=k

The points are Colinear

{:}\longrightarrow\sf Area \:of\:\triangle ABC=0

According to Coordinate geometry

{\boxed{\sf Area \ of \ triangle = \dfrac{1}{2} \times \left [ x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)\right]}}

  • Substitute the values

: \implies \sf  \dfrac{1}{2} \times [ \ 6(0-k)+4(k-(-1))+2(-1-0)  \ ]  = 0

: \implies \sf \dfrac{1}{2} \times [ \ 6(0-k)+4(k+1)+2(-1-0) \ ] = 0

: \implies \sf \dfrac{1}{2} \times [ \ -6k+4k+4-2 \ ]  = 0

: \implies \sf \dfrac{1}{2} \times [ \ -2k+2 \ ] = 0

: \implies \sf -2k+2 = 0

: \implies \sf  -2k = -2

: \implies \bf k=1

\therefore\sf k=1.

Similar questions
Math, 5 months ago