Math, asked by raghavkashyap1972, 4 months ago

Find the value of k for which the points A(-5,1); B(1,k); and C(4,-2) are collinear. ​

Answers

Answered by Anonymous
15

♥........Hlw dude.........♥

Here is the answer for ur qstion .

QUESTION :-

Find the value of k for which the points A(-5,1); B(1,k); and C(4,-2) are collinear. ​

ANSWER:-

Since, A, B & C are collinear points.

Then, slope of AB is equal to slope of AC.

\implies\bf{\frac{y2-y1}{x2-x1}\bf{\:= {\frac{y3-y1}{x3-x1}

\implies{\bf{\frac{k-1}{1- -5}\bf{\:={\frac{-2-1}{4--5}

\implies{\bf{\frac{k-1}{1+6}\bf{\:={\frac{-3}{4+5}

\implies\bf{\frac{k-1}{7}{\bf{\:={\frac{-3}{9}

\implies\bf{9  (k-1)= -21}

\implies\bf{k-9= -21}

\implies{\bf{k = -21 +9 }

\implies{\bf{k = -12}

Hope this answer can helps u dear....♥

Similar questions