Math, asked by bansalishrishti, 11 months ago

find the value of k for which the quadratic equation 16 X square + 4 kx + 9 equals to zero has real and equal roots​

Answers

Answered by ravulaaditi
3

Step-by-step explanation:

Hope it is the correct answer

Attachments:
Answered by BrainlyConqueror0901
6

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:k=\pm 6}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\   \tt{ : \implies 16x^{2}  +4kx + 9 = 0 }\\  \\ \red{ \underline \bold{To \: Find : }} \\    \tt{: \implies  value \: of \: k = ?}

• According to given question :

  \tt{ : \implies 16x^{2}  +4kx + 9= 0} \\   \\   \tt{\circ  \: a =16} \\ \\  \tt{\circ \: b = 4k}\\\\ \tt{\circ \:c = 9}\\ \\   \bold{Discriminant \:  = 0} \\  \\     \tt{:  \rightarrow \: D \implies  {b}^{2} - 4ac = 0 } \\  \\    \tt{: \implies  {b}^{2}  - 4ac = 0} \\  \\  \text{Putting \: the \: given \: values} \\   \tt{: \implies (4k)^{2}  -  4\times16 \times 9= 0 } \\  \\    \tt{: \implies \:  16{k}^{2}  -576 = 0 } \\  \\  \tt{ : \implies \:   16({k}^{2}   - 36) = 0 } \\\\ \tt{: \implies k^{2}= 36} \\  \\   \tt{: \implies k= \sqrt{36}} \\  \\   \green{\tt{: \implies k = \pm 6 }}

Similar questions