Math, asked by rahul17988580, 11 months ago

find the value of k for which the quadratic equation 2 X square + kx + 3 equal to zero has turial equation roots​

Answers

Answered by BrainlyConqueror0901
3

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:k=\pm 2\sqrt{6}}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\   \tt{ : \implies 2x^{2}  +kx + 3= 0 }\\  \\ \red{ \underline \bold{To \: Find : }} \\    \tt{: \implies  value \: of \: k = ?}

• According to given question :

  \tt{ : \implies 2x^{2}  +kx + 3= 0} \\   \\   \tt{\circ  \: a = 2} \\ \\  \tt{\circ \: b = k}\\\\ \tt{\circ \:c = 3}\\ \\   \bold{Discriminant \:  = 0} \\  \\     \tt{:  \rightarrow \: D \implies  {b}^{2} - 4ac = 0 } \\  \\    \tt{: \implies  {b}^{2}  - 4ac = 0} \\  \\  \text{Putting \: the \: given \: values} \\   \tt{: \implies (k)^{2}  -  4\times2 \times 3= 0 } \\  \\    \tt{: \implies \:  {k}^{2}  -24= 0 } \\  \\  \tt{ : \implies \:   ({k}^{2}   -( 2\sqrt{6})^{2}) = 0 } \\\\ \tt{: \implies (k+2\sqrt{6})(k-2\sqrt{6})= 0}  \\  \\   \green{\tt{: \implies k = \pm 2\sqrt{6} }}

Similar questions