Math, asked by nsureshutmost1970, 5 months ago

find the value of k for which the quadratic equation 2x2+kx+2=0has equal roots

Answers

Answered by Anonymous
19

Given Equation

  • 2x² + kx + 2 = 0

⠀⠀

To find

  • Value of k.

Solution

  • We know that, when the quadratic equation has equal roots then

\large{\boxed{\boxed{\sf{Discriminant = 0}}}}

  • Let's find the discriminant

\: \: \: \: \: \: \: \: \: \: \: \: \boxed{\tt{\bigstar{D = b^2 - 4ac{\bigstar}}}}

Here,

  • a = 2
  • b = k
  • c = 2

\tt:\implies\: \: \: \: \: \: \: \: {D = (k)^2 - 4(2)(2)}

\tt:\implies\: \: \: \: \: \: \: \: {D = k^2 - 16}

  • Since, roots are equal

\mathcal:\implies\: \: \: \: \: \: \: \: {D = 0}

\tt:\implies\: \: \: \: \: \: \: \: {k^2 - 16 = 0}

\tt:\implies\: \: \: \: \: \: \: \: {k^2 = 16}

\tt:\implies\: \: \: \: \: \: \: \: {k = \sqrt{16}}

\bf:\implies\: \: \: \: \: \: \: \: {k = ±4}

Hence,

  • The value of k is ±4.

━━━━━━━━━━━━━━━━━━━━━━

Similar questions