Math, asked by naveenrajora123r, 3 months ago

Find the value of k for which the quadratic equation 3

3x^+2+k=0 has two equal roots.​

Answers

Answered by Sen0rita
7

{\underline{\purple{\mathfrak{Correct \: question   \:  - }}}} \:

  • \sf \: a \: quadratic \: equation \: \bold{ {3x}^{2}  + kx + 3= 0} \ \: \:  has \: two \: equal \: roots.

{\underline{\purple{\mathfrak{We \: have \: to \: find \:  - }}}}

  • \sf \: the \: value \: of \: \bold{k}.

{\underline{\purple{\mathfrak{As \: we \: know \: that \: -}}}}

\sf \: If \: a \: quadratic \: equation \: has \: two \: roots \: equal, \: then \: discriminant \: (D) = 0.

\boxed{\boxed{\bold\gray{\bigstar \: discriminant \:  = b {}^{2} - 4ac }}}

\underline{\purple{\mathfrak{Here, \: we \: have \: - }}}

  • \sf \: a \:  = 3
  • \sf \: b = k
  • \sf c = 3

\underline\bold\purple{According \: to \: question \:  -  \: }

\sf\implies \: discriminant \:  =  {b}^{2}  - 4ac \\  \\ \sf\implies \: 0 =  {k}^{2}  - (4 \times 3 \times 3) \\  \\ \sf\implies0 =  {k}^{2}  - 36 \\  \\ \sf\implies \:  {k}^{2}  = 36 \\  \\ \sf\implies \: k =  \sqrt{36}  \\  \\ \sf\implies \: k \:  = \boxed{\bold\purple{6}}

\sf\therefore\underline{Hence, \: the \: value \: of \: k \: is \: \bold{6}.}


Anonymous: your way of using codes are mind blowing!
Anonymous: keep up your good work
Sen0rita: Thenkuu ❤️
Anonymous: keep it up ❣️
Sen0rita: thenks ❤️
ItzCaptonMack: perfect ! hitted the Bulls eye :)
Sen0rita: thenkuu ❤️
ItzCaptonMack: welcome
Similar questions