Math, asked by shakthi2102, 1 year ago

find the value of K for which the quadratic equation 3x^2 - root3 kx+4=0 has equal roots

Answers

Answered by BrainlyConqueror0901
3

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:k=\pm 4}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\   \tt{ : \implies 3x^{2}  -\sqrt{3}kx + 4= 0 }\\  \\ \red{ \underline \bold{To \: Find : }} \\    \tt{: \implies  value \: of \: k = ?}

• According to given question :

  \tt{ : \implies 3x^{2}  -\sqrt{3}kx + 4= 0} \\   \\   \tt{\circ  \: a = 3} \\ \\  \tt{\circ \: b = -\sqrt{3}k}\\\\ \tt{\circ \:c = 4}\\ \\   \bold{Discriminant \:  = 0} \\  \\     \tt{:  \rightarrow \: D \implies  {b}^{2} - 4ac = 0 } \\  \\    \tt{: \implies  {b}^{2}  - 4ac = 0} \\  \\  \text{Putting \: the \: given \: values} \\   \tt{: \implies (-\sqrt{3}k)^{2}  -  4\times3\times 4= 0 } \\  \\    \tt{: \implies \:  3{k}^{2}  -48 = 0 } \\  \\  \tt{ : \implies \:   3({k}^{2}   - 16) = 0 } \\\\ \tt{: \implies k^{2}= 16} \\  \\   \tt{: \implies k= \sqrt{16}} \\  \\   \green{\tt{: \implies k = \pm 4 }}

Similar questions