Math, asked by samiksha2740, 8 months ago

find the value of k for which the quadratic equation 3x^2+2x+k=0 two equal real roots​

Answers

Answered by ShírIey
51

AnswEr :

Given Quadratic Equation :

\large\dag\: \sf 3x^2 + 2x + k = 0

We've to find the value of k for equation should've two equal roots. We know the formula -

\large\boxed{\mathfrak{D = b^2 - 4ac}}

\frak{Here}\begin{cases}\sf{D \: is \: Discriminant} \\ \sf{Value \: of \: a \: is \: 3}\\\sf{Value \: of \: b \: is \: 2}\\\sf{Value\: of \: c \: is \: k} \end{cases}

\rule{200}2

\large\implies\sf D = b^2 - 4ac

\large\implies\sf \Big(2 \Big)^2 - 4  \Big( 3 \Big) \Big( k \Big) = 0

\large\implies\sf 4 - 12k = 0

\large\implies\sf -12k = - 4

\large\implies\sf k = \cancel\dfrac{-4}{-12}

\large\implies\boxed{\sf{\red{k = \dfrac{1}{3}}}}

For real and equal roots value of k will be 1/3.

\rule{200}2


ShírIey: Thanks for the brainliest! :D
Answered by Anonymous
103

Step-by-step explanation:

GIVEN QUADRATIC EQUATION IS↙️

3x^2+2x+k=0,and roots are real!

here,

a=3

b=2

c=k

as \: we \: know \: that \:  \: d = b ^{2}  - 4ac

putting \: the \: value \: of \: a = 3 \:  \:  \: b = 2 \:  \:  and \: c = k

we \: \: get \:

2 ^{2}  - 4 \times 2 \times k

4 - 12k

the given equation will have real roots if,

d \geqslant 0

4 - 12k \geqslant 0

12k   \leqslant 4

k  \leqslant   \frac{4}{12}

k  \leqslant  \frac{1}{3}

<font color =green>

therefore \:  \: th \: value \: of \: k \:  \leqslant  \frac{1}{3}

Similar questions