Math, asked by vsma46572, 1 year ago

Find the value of k for which the quadratic equation 3x^2 +kx+3=0 has real and equal roots.

Answers

Answered by shafaya
56

for roots equal and real

b^2 _ 4ac =0

so a=3,b=K and c=3

k^2 _ 4×3×3=0

k^2 =0+36

k=under root 36

k=6

Answered by BrainlyConqueror0901
171

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:k=\pm 6}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\   \tt{ : \implies 3x^{2}  +kx + 3= 0 }\\  \\ \red{ \underline \bold{To \: Find : }} \\    \tt{: \implies  value \: of \: k = ?}

• According to given question :

  \tt{ : \implies 3x^{2}  +kx + 3= 0} \\   \\   \tt{\circ  \: a = 3} \\ \\  \tt{\circ \: b = k}\\\\ \tt{\circ \:c = 3}\\ \\   \bold{Discriminant \:  = 0} \\  \\     \tt{:  \rightarrow \: D \implies  {b}^{2} - 4ac = 0 } \\  \\    \tt{: \implies  {b}^{2}  - 4ac = 0} \\  \\  \text{Putting \: the \: given \: values} \\   \tt{: \implies (k)^{2}  -  4\times3 \times 3= 0 } \\  \\    \tt{: \implies \:  {k}^{2}  -36 = 0 } \\  \\  \tt{ : \implies \:   ({k}^{2}   - 6^{2}) = 0 } \\\\ \tt{: \implies (k-6)(k+6)=0} \\  \\   \tt{: \implies k=6\:and\:-6} \\  \\   \green{\tt{: \implies k = \pm 6 }}

Similar questions